欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  后端开发

python转大数据容易吗

程序员文章站 2022-04-02 13:10:40
...
数据就是资产。大数据工程师是现在十分火热、高薪的职位。做大数据开发和分析不仅要用到Java,Python也是最重要的语言。

python转大数据容易吗

那么,今天我们就来分析一下,Python之于大数据的意义和作用。(推荐学习:Python视频教程

什么是大数据?

大数据(big data),指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。

为什么是python大数据?

从大数据的百科介绍上看到,大数据想要成为信息资产,需要有两步,一是数据怎么来,二是数据处理。

数据怎么来:

在数据怎么来这个问题上,数据挖掘无疑是很多公司或者个人的首选,毕竟大部分公司或者个人是没有能力产生这么多数据的,只能是挖掘互联网上的相关数据。

网络爬虫是Python的传统强势领域,最流行的爬虫框架Scrapy,HTTP工具包urlib2,HTML解析工具beautifulsoup,XML解析器lxml,等等,都是能够独当一面的类库。

当然,网络爬虫并不仅仅只是打开网页,解析HTML怎么简单。高效的爬虫要能够支持大量灵活的并发操作,常常要能够同时几千甚至上万个网页同时抓取,传统的线程池方式资源浪费比较大,线程数上千之后系统资源基本上就全浪费在线程调度上了。

Python由于能够很好的支持协程(Coroutine)操作,基于此发展起来很多并发库,如Gevent,Eventlet,还有Celery之类的分布式任务框架。被认为是比AMQP更高效的ZeroMQ也是最早就提供了Python版本。有了对高并发的支持,网络爬虫才真正可以达到大数据规模。

数据处理:

有了大数据,那么也需要处理,才能找到适合自己的数据。而在数据处理方向,Python也是数据科学家最喜欢的语言之一,这是因为Python本身就是一门工程性语言,数据科学家用Python实现的算法,可以直接用在产品中,这对于大数据初创公司节省成本是非常有帮助的。

正是因为这些原因,才让python语言成为很多公司处理大数据的首选。加之python本身具有简单、易学、库多等原因,让越来越多的人选择转行python。

更多Python相关技术文章,请访问Python教程栏目进行学习!

以上就是python转大数据容易吗的详细内容,更多请关注其它相关文章!

相关标签: python