欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

机械振动信号15个时域统计指标

程序员文章站 2022-04-02 11:05:10
时域统计指标计算公式振动信号原始统计特征分为两类:时域统计特征、频域统计特征。信号的时域特征是通过统计分析信号的各种时域参数、指标的估计或计算得到的,如表所示,分为有量纲参数和无量纲参数两种,其中1-9为有量纲参数和10-15无量纲参数。python程序def get_time_domain_features(data): '''data为一维振动信号''' x_rms = 0 absXbar = 0 x_r = 0 S = 0 K = 0...

时域统计指标计算公式

振动信号原始统计特征分为两类:时域统计特征、频域统计特征。

信号的时域特征是通过统计分析信号的各种时域参数、指标的估计或计算得到的,如表所示,分为有量纲参数和无量纲参数两种,其中1-9为有量纲参数和10-15无量纲参数。
机械振动信号15个时域统计指标

python程序

def get_time_domain_features(data):
    '''data为一维振动信号'''
    x_rms = 0
    absXbar = 0
    x_r = 0
    S = 0
    K = 0
    k = 0
    x_rms = 0
    fea = []
    len_ = len(data.iloc[0, :])
    mean_ = data.mean(axis=1)  # 1.均值
    var_ = data.var(axis=1)  # 2.方差
    std_ = data.std(axis=1)  # 3.标准差
    max_ = data.max(axis=1)  # 4.最大值
    min_ = data.min(axis=1)  # 5.最小值
    x_p = max(abs(max_[0]), abs(min_[0]))  # 6.峰值
    for i in range(len_):
        x_rms += data.iloc[0, i] ** 2
        absXbar += abs(data.iloc[0, i])
        x_r += math.sqrt(abs(data.iloc[0, i]))
        S += (data.iloc[0, i] - mean_[0]) ** 3
        K += (data.iloc[0, i] - mean_[0]) ** 4
    x_rms = math.sqrt(x_rms / len_)  # 7.均方根值
    absXbar = absXbar / len_  # 8.绝对平均值
    x_r = (x_r / len_) ** 2  # 9.方根幅值
    W = x_rms / mean_[0]  # 10.波形指标
    C = x_p / x_rms  # 11.峰值指标
    I = x_p / mean_[0]  # 12.脉冲指标
    L = x_p / x_r  # 13.裕度指标
    S = S / ((len_ - 1) * std_[0] ** 3)  # 14.偏斜度
    K = K / ((len_ - 1) * std_[0] ** 4)  # 15.峭度

    fea = [mean_[0],absXbar,var_[0],std_[0],x_r,x_rms,x_p,max_[0],min_[0],W,C,I,L,S,K]
    return fea

搜索这篇文章的应该都是同道中人,点个赞再走吧!机械振动信号15个时域统计指标

转载请注明:https://blog.csdn.net/baidu_38963740/article/details/110940823.

本文地址:https://blog.csdn.net/baidu_38963740/article/details/110940823