分析:
首先,连续选择一段必定最优...
区间DP,f[i][j]表示从i开始,连续j个被吃掉了,并且,牛在i处,g[i][j]则表示在i+j-1处
f[i][j]可以从g[i+1][j]和f[i+1][j]转移,g[i][j]可以从g[i][j-1]和f[i][j-1]转移,转移方程:
f[i][j]=min(f[i+1][j]+(n-j+1)*(a[i+1]-a[i]),g[i+1][j]+(n-j+1)*(a[i+j-1]-a[i]));g[i][j]同样...
附上代码:
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <cstdlib>
#include <cstring>
#include <queue>
#include <iostream>
#include <set>
using namespace std;
#define N 1005
long long f[N][N],g[N][N];
int n,L,a[N];
int main()
{
memset(f,0x3f,sizeof(f));memset(g,0x3f,sizeof(g));
scanf("%d%d",&n,&L);
for(int i=1;i<=n;i++)scanf("%d",&a[i]);
sort(a+1,a+n+1);
int p=lower_bound(a+1,a+n+1,L)-a;
if(p!=1)f[p-1][1]=g[p-1][1]=1ll*n*(L-a[p-1]);
if(a[p]>=L)f[p][1]=g[p][1]=1ll*n*(a[p]-L);
for(int i=2;i<=n;i++)
{
for(int j=1;j<=n-i+1;j++)
{
int k=i+j-1;
f[j][i]=min(f[j+1][i-1]+(n-i+1)*(a[j+1]-a[j]),g[j+1][i-1]+(n-i+1)*(a[k]-a[j]));
g[j][i]=min(f[j][i-1]+(a[k]-a[j])*(n-i+1),g[j][i-1]+(a[k]-a[k-1])*(n-i+1));
}
}
printf("%lld\n",min(f[1][n],g[1][n]));
return 0;
}