SDRAM之初始化(波形设计、代码设计、仿真调试)
SDRAM背景
SDRAM简介
SDRAM( Synchronous Dynamic Random Access Memory),同步动态随机存储器。
同步是指 Memory 工作需要同步时钟,内部的命令的发送与数据的传输都以它为基准;(本文用了差分时钟,来处理时序的数据采集问题)
动态是指存储阵列需要不断的刷新来保证存储的数据不丢失,因为 SDRAM 中存储数据是通过电容来工作的,SDRAM需要在电容的电量放完之前进行刷新;(刷新时间后续参考15.625us)。
随机是指数据不是线性依次存储,而是*指定地址进行数据的读写。
SDRAM 容量
SDRAM总容量的计算公式如下:SDRAM 容量 = 数据位宽 x 存储单元数量(行地址 x 列地址 x Bank 数)
行地址:12位 列地址 10位 行地址X列地址=2的20次方=2M
SRAM SDRAM 区别
- SRAM: 静态RAM,速度快,面积大,不需要刷新。SDRAM:同步DRAM,速度慢,面积小,需要定时刷新。
SDRAM 应用背景
SDRAM作为FPGA处理吞吐量较大的数据时必须选择的存储器件,对于FPGA的ram、rom、fifo的存储量比较小。例如想存一张1080P的图片,单单靠FPGA本身的M9K或M18K是远远达不到的,所以我们要利用SDRAM作为缓存。采用M级别的存储器等等。
SDRAM 核心技术
- SDRAM是多Bank结构:例如在一个具有两个Bank的SDRAM的模组中,其中一个Bank在进行预充电期间,另一个Bank却马上可以被读取,这样当进行一次读取后,又马上去读取已经预充电Bank的数据时,就无需等待而是可以直接读取了。这也就大大提高了存储器的访问速度。为了实现这个功能,SDRAM需要增加对多个Bank的管理,实现控制其中的Bank进行预充电。在一个具有两个以上Bank的SDRAM中,一般会多一根叫做BAn的引脚,用来实现在多个Bank之间的选择。
设计思路(实现功能)
功能思路分析
时序接口设计:
- 根据读数据手册步骤分析,看我的博客。
- 对于多时序冲突问题:是否考虑状态机架构
- 看单时序时间参数分析:考虑设计计数器架构;根据单时序一步步执行的命令考虑状态机架构。
- 看命令:command ,查找命令参数表 + 查找不同命令的介绍:如何设置输出端口来实现命令
- 时钟分析:时钟速率;上升沿、下降沿检测(差分时钟设计)
普通设计:
1.根据时间的不同先设计计数器架构,再进行设计其他信号
2.或者考虑先设计状态机架构,选取状态很重要
如何实现SDRAM读写功能
根据数据手册可以进行读写功能,由数据手册得到,只能先进行初始化才能进行后续的写、读、刷新操作。
SDRAM管脚描述
CLK 系统时钟 边沿采样,系统时钟必须供给才能让芯片运作
CKE 时钟使能信号 当它为0时能够屏蔽系统时钟以此来冻结整个芯片(类似锁存作用)在发送命令一个时钟周期之前就必须将CKE置1
A0~A12 地址 行列地址共用这个信号,行地址占用A0~A12,列地址占用(A0-A9)
BA0~BA1 bank选择地址 在行地址锁存时间时**某个bank,在列地址锁存时间时选择bank来读写
CS (n) 片选信号 能够屏蔽对芯片的操作,除了CLK,CKE,DQM脚不被影响
RAS 行地址锁存 当它为0时在时钟边沿时锁存行地址
CAS 列地址锁存 当它为0时在时钟边沿时锁存列地址
WE 写使能 使能写,使能行预充电
DQM 数据输入输出屏蔽 使数据输出脚变成高阻态,屏蔽数据输入
DQ0~15 数据输入输出 这些脚同时是数据输入脚也是数据输出脚
CS RAS CAS WE 构建了 command
初始化描述
初始化波形
初始化如何实现:SDRAM 初始空命令 再进行 PRECHARGE命令,再进行AUTO FRESH命令 再LOAD MODE REFRESH 命令。(后面的ACTIVE命令不需要在初始化进行设计,在读、写设计需要ACTIVE命令)
时间参数设计看表
T:200us
trp含义:上升沿检测到命令1,和检测到命令2之间的时间大于trp,所以不能一直给命令1,
而是给出命令1后,给出空操作,等价于延长第一次SDRAM响应命令的时间,而如果一直给命令1,等价于多次进行相应命令1了。
设置20ns.
TRC:设置80ns.
命令设计看表
从图中我们可以看到COMMAND信号,该信号是由sdram的四个控制信号构成,即sdram_cs_n, sdram_ras_n, sdram_cas_n, sdram_we_n,具体每个命令的编码如下:
同时我们可以看到根据命令输出对应的 DQm A0-A12 DQ0-15 BA0 BA1
针对命令输出相应的值:
NOP:不用管
PRE :A10=1就可以表示对所有bank充电 BA0 BA1 A0-A12 DQ0-15 不需要设置
( A10:1 表明对所有bank充电,不需要BA0,BA1设计
A10:0 表明对挑选bank充电,需要对BA0,BA1设计)
AREF:不用管
MSET:看命令+模式寄存器
LOAD MODE REFRESH :查找命令介绍
对于输出端口输出如下
选择的模式是4突发,读数据3个时钟延时,Sequential模式,突发读写模式,具体的编码可以去程序中查找。
sdram_addr <= 12’b0000_0011_0010; bank=2‘b00
时钟分析设计:
采用100M设计,便于参数计数。
同时注意:原图上升沿开始检测命令。而我们写代码也是上升沿写命令。考虑采用差分时钟设计。
波形设计
考虑采用计数器架构设计。简单点
代码设计
状态机设计
不采用状态机架构,因为简单,直接采用计数器架构
计数器设计
1.不同时原则,1个计数器可以对不同时间段计数
数据存储设计
main代码
1.case endcase 一起用而且 不要begin end
初始化模块代码
//===============================================================================
//**************************Cyclone IV E EP4CE15F23C8 ***************************
// 初始化模块
//===============================================================================
module sdram_init (
//sysytem
input wire [0:0] clk ,//系统工作时钟100M
input wire [0:0] rst_n ,//异步复位
//init
input wire [0:0] init_en ,//初始化使能信号
output reg [0:0] init_done ,//初始化结束信号
output reg [11:0] init_addr ,//sdram输出地址
output reg [3:0] init_cmd //sdram输出端口{sdram_cs,sdram_ras,sdram_cas,sdram_we}
);
//===============================================================================
//**************************Define Parameter ******************************
//==============================================================================
parameter DELAY_CNT_MAX = 15'd20000 ; //延时200us 200000/10=20000
parameter CMD_CNT_MAX = 21 ; //命令序列机
parameter NOP = 4'b0111 ; //空命令,SDRAM起到延时的作用,
parameter PRE = 4'b0010 ; //SDRAM——CLK上升沿检测PRE命令,SDRAM内部状态机开始PRE操作。
parameter AREF = 4'b0001 ; //SDRAM——CLK上升沿检测AREF命令,SDRAM内部状态机开始AREF操作。
parameter MSET = 4'b0000 ; //SDRAM——CLK上升沿检测MSET命令,SDRAM内部状态机开始MSET操作。
//===============================================================================
//*********************** Intenral Singal Design ********************************
//===============================================================================
wire [0:0] end_delay_cnt ;//延时200us结束信号
reg [0:0] delay_cnt_flag ;//延时200us加1信号
reg [0:0] cmd_cnt_flag ;//用于延时cmd加1信号
wire [0:0] end_cmd_cnt ;//用于延时cmd结束信号
reg [14:0] cnt ;//不同时计数
wire [0:0] add_cnt ;//
wire [0:0] end_cnt ;//
//===============================================================================
//******************************** Cnt Design **********************************
//===============================================================================
//delay_cnt_flag
always @(posedge clk or negedge rst_n)begin
if(!rst_n)begin
delay_cnt_flag <=1'b0 ;
end
else if(init_en==1)begin
delay_cnt_flag <= 1'b1;
end
else if(end_delay_cnt)begin
delay_cnt_flag <= 1'b0 ;
end
end
//cmd_cnt_flag
always @(posedge clk or negedge rst_n)begin
if(!rst_n)begin
cmd_cnt_flag <=1'b0 ;
end
else if(end_delay_cnt==1)begin
cmd_cnt_flag <= 1'b1;
end
else if(end_cmd_cnt)begin
cmd_cnt_flag <= 1'b0 ;
end
end
//cnt
always @(posedge clk or negedge rst_n)begin
if(!rst_n)begin
cnt <= 0;
end
else if(add_cnt)begin
if(end_cnt)
cnt <= 0;
else
cnt <= cnt + 1;
end
end
assign add_cnt = delay_cnt_flag==1 || cmd_cnt_flag==1;
assign end_delay_cnt = delay_cnt_flag && cnt==DELAY_CNT_MAX-1;
assign end_cmd_cnt = cmd_cnt_flag && cnt==CMD_CNT_MAX-1;
assign end_cnt = end_delay_cnt || end_cmd_cnt;
//===============================================================================
//**************************** Output Singal Design *****************************
//===============================================================================
//init_addr
always @(posedge clk or negedge rst_n)begin
if(!rst_n)begin
init_addr <= 12'b0100_0000_0000 ;
end
else if(cmd_cnt_flag==1 && cnt==18 )begin
init_addr <= 12'b0000_0011_0010;
end
else begin
init_addr <= 12'b0100_0000_0000;
end
end
//init_done:不是单周期信号,而是长期保持信号:用于刷新计数很重要。
always @(posedge clk or negedge rst_n)begin
if(!rst_n)begin
init_done <=1'b0 ;
end
else if(end_cmd_cnt==1)begin
init_done <= 1'b1;
end
else begin
init_done <= init_done ;
end
end
//init_cmd 命令 {sdram_cs_n, sdram_ras_n, sdram_cas_n, sdram_we_n}
always @(posedge clk or negedge rst_n)begin
if(!rst_n)begin
init_cmd <=NOP ; //相邻命令之间用nop做延时作用,等待SDRAM响应完一个命令才能响应下一个命令
end
else if(cmd_cnt_flag==1)begin
case(cnt)
0: init_cmd <= PRE ;
2: init_cmd <= AREF ;
10: init_cmd <= AREF ;
18: init_cmd <= MSET ;
default:init_cmd <= NOP ;
endcase
end
end
endmodule
仲裁模块代码
//===============================================================================
//**************************Cyclone IV E EP4CE15F23C8 ***************************
// 仲裁模块
//===============================================================================
module sdram_ctrl (
//system
input wire [0:0] clk ,//
input wire [0:0] rst_n ,//
//init
input wire [0:0] sdram_en ,//
input wire [0:0] init_done ,//
input wire [11:0] init_addr ,//
input wire [3:0] init_cmd ,//
output reg [0:0] init_en //
);
//===============================================================================
//**************************Define Parameter ******************************
//==============================================================================
parameter IDLE = 6'b000001;//空闲状态
parameter SD_INIT = 6'b000010;//初始化状态
parameter SD_ARBIT = 6'b000100;//仲裁状态
//==========================================================================
//******************************** Define Internal Signals ****************
//==========================================================================
reg [5:0] state_c ;//
reg [5:0] state_n ;//
//===============================================================================
//*********************** State Fsm Design ********************************
//===============================================================================
aaa@qq.com(posedge clk or negedge rst_n)begin
if(!rst_n)begin
state_c <= IDLE;
end
else begin
state_c <= state_n;
end
end
aaa@qq.com(*)begin
case(state_c)
IDLE:begin
if(sdram_en)begin
state_n = SD_INIT;
end
else begin
state_n = state_c;
end
end
SD_INIT:begin
if(init_done)begin
state_n = SD_ARBIT;
end
else begin
state_n = state_c;
end
end
SD_ARBIT:begin
if(aref_req)begin
state_n = SD_AREF;
end
else if(wr_req) begin
state_n = SD_WR;
end
else if(rd_req) begin
state_n = SD_RD;
end
else begin
state_n = state_c;
end
end
default:begin
state_n = IDLE;
end
endcase
end
//===============================================================================
//**************************** Output Singal Design *****************************
//===============================================================================
//init_en
always @(posedge clk or negedge rst_n)begin
if(!rst_n)begin
init_en<=1'b0 ;
end
else if(state_c==IDLE && sdram_en==1)begin
init_en <= 1'b1;
end
else begin
init_en <= 1'b0;
end
end
//sdram 端口
aaa@qq.com(*)begin
case(state_c)
SD_INIT:begin
sdram_cke = 1 ;
sdram_bank = 2'b00;
sdram_cs = init_cmd[3];
sdram_ras = init_cmd[2];
sdram_cas = init_cmd[1];
sdram_we = init_cmd[0];
sdram_dqm = 2'b00 ;
sdram_addr = init_addr ;
end
default:begin
sdram_cke = 1;
sdram_bank = 0;
sdram_cs = 0;
sdram_ras = 1;
sdram_cas = 1;
sdram_we = 1;
sdram_dqm = 2'b00;
sdram_addr = 0 ;
end
endcase
end
endmodule
顶层模块代码
module sdram_top (
//system_clk ,//
input wire [0:0] clk ,//
input wire [0:0] rst_n ,//
//sdram
output wire [0:0] sdram_clk ,//
output wire [0:0] sdram_cke ,//
output wire [0:0] sdram_cs ,//
output wire [0:0] sdram_ras ,//
output wire [0:0] sdram_cas ,//
output wire [0:0] sdram_we ,//
output wire [1:0] sdram_dqm ,//
output wire [1:0] sdram_bank,//
output wire [11:0] sdram_addr,//
inout wire [15:0] sdram_dq //
);
//===============================================================================
//*********************** Define Intenral Singal ********************************
//===============================================================================
//init
wire [0:0] init_done ;
wire [0:0] init_en ;
wire [11:0] init_addr ;
wire [3:0] init_cmd ;
//===============================================================================
//*********************** Intenral Singal Design ********************************
//===============================================================================
//===============================================================================
//*********************** Output Singal Design ********************************
//===============================================================================
assign sdram_clk = ~ clk ;
//===============================================================================
//*********************** 例化模块 ************************************
//===============================================================================
sdram_ctrl sdram_ctrl_inst(
.clk (clk ) ,
.rst_n (rst_n ) ,
.sdram_en ( 1 ) ,
.init_done (init_done ) ,
.init_en (init_en ) ,
.init_addr (init_addr ) ,
.init_cmd (init_cmd )
);
//init
sdram_init sdram_init_inst(
.clk (clk ) ,
.rst_n (rst_n ) ,
.init_en (init_en ) ,
.init_done (init_done) ,
.init_addr (init_addr) ,
.init_cmd (init_cmd )
);
endmodule
代码编译
1.case endcase 一起用而且 不要begin end
testbench
- 名称和顶层模块一样
- defparam +顶层模块.inst.模块1.inst.CNT=5 改数字
`timescale 1ns / 1ps
`define CLOCK 10 //100M
//==========================================================================
// **************** 顶层测试模型 **************
//==========================================================================
//模型名称和顶层模块前面名字相同
module sdram_top_tb;
//激励源
reg clk ;
reg rst_n ;
//探针检测信号
wire sdram_clk ;
wire sdram_cke ;
wire sdram_cs ;
wire sdram_ras ;
wire sdram_cas ;
wire sdram_we ;
wire [1:0] sdram_dqm ;
wire [1:0] sdram_bank ;
wire [11:0] sdram_addr ;
wire [15:0] sdram_dq ;
//==========================================================================
// **************** 激励源输入,检测原输出 **************
//==========================================================================
sdram_top sdram_top_inst(
.clk (clk ) ,
.rst_n (rst_n ) ,
.sdram_clk (sdram_clk ),
.sdram_cke (sdram_cke ),
.sdram_bank (sdram_bank ),
.sdram_cs (sdram_cs ),
.sdram_ras (sdram_ras ),
.sdram_cas (sdram_cas ),
.sdram_we (sdram_we ),
.sdram_addr (sdram_addr ),
.sdram_dqm (sdram_dqm ),
.sdram_dq (sdram_dq )
);
//sdram模型
sdram_model_plus sdram_model_plus_inst(
.Dq (sdram_dq ),
.Addr (sdram_addr ),
.Ba (sdram_bank ),
.Clk (sdram_clk ),
.Cke (sdram_cke ),
.Cs_n (sdram_cs ),
.Ras_n (sdram_ras ),
.Cas_n (sdram_cas ),
.We_n (sdram_we ),
.Dqm (sdram_dqm ),
.Debug (1'b1 )
);
//==========================================================================
// **************** 初始化激励设置 **************
//==========================================================================
//第一个initial
initial begin
clk = 1'b0;
rst_n <= 1'b0;
#(2*`CLOCK+1);
rst_n <= 1'b1;
end
always #(`CLOCK/2) clk = ~clk;
//==========================================================================
// **************** 参数同一调整设置 **************
//==========================================================================
//对SDRAM模型调整成我们的类型
defparam sdram_model_plus_inst.addr_bits = 12;
defparam sdram_model_plus_inst.data_bits = 16;
defparam sdram_model_plus_inst.col_bits = 9;
defparam sdram_model_plus_inst.mem_sizes = 2*1024*1024; // 2M
endmodule
`timescale 1ns / 100ps
module sdram_model_plus (Dq, Addr, Ba, Clk, Cke, Cs_n, Ras_n, Cas_n, We_n, Dqm,Debug);
parameter addr_bits = 11;
parameter data_bits = 32;
parameter col_bits = 8;
parameter mem_sizes = 1048576*2-1;//1 Meg
inout [data_bits - 1 : 0] Dq;
input [addr_bits - 1 : 0] Addr;
input [1 : 0] Ba;
input Clk;
input Cke;
input Cs_n;
input Ras_n;
input Cas_n;
input We_n;
input [3 : 0] Dqm; //高低各8bit
//added by xzli
input Debug;
reg [data_bits - 1 : 0] Bank0 [0 : mem_sizes];//存储器类型数据
reg [data_bits - 1 : 0] Bank1 [0 : mem_sizes];
reg [data_bits - 1 : 0] Bank2 [0 : mem_sizes];
reg [data_bits - 1 : 0] Bank3 [0 : mem_sizes];
reg [1 : 0] Bank_addr [0 : 3]; // Bank Address Pipeline
reg [col_bits - 1 : 0] Col_addr [0 : 3]; // Column Address Pipeline
reg [3 : 0] Command [0 : 3]; // Command Operation Pipeline
reg [3 : 0] Dqm_reg0, Dqm_reg1; // DQM Operation Pipeline
reg [addr_bits - 1 : 0] B0_row_addr, B1_row_addr, B2_row_addr, B3_row_addr;
reg [addr_bits - 1 : 0] Mode_reg;
reg [data_bits - 1 : 0] Dq_reg, Dq_dqm;
reg [col_bits - 1 : 0] Col_temp, Burst_counter;
reg Act_b0, Act_b1, Act_b2, Act_b3; // Bank Activate
reg Pc_b0, Pc_b1, Pc_b2, Pc_b3; // Bank Precharge
reg [1 : 0] Bank_precharge [0 : 3]; // Precharge Command
reg A10_precharge [0 : 3]; // Addr[10] = 1 (All banks)
reg Auto_precharge [0 : 3]; // RW AutoPrecharge (Bank)
reg Read_precharge [0 : 3]; // R AutoPrecharge
reg Write_precharge [0 : 3]; // W AutoPrecharge
integer Count_precharge [0 : 3]; // RW AutoPrecharge (Counter)
reg RW_interrupt_read [0 : 3]; // RW Interrupt Read with Auto Precharge
reg RW_interrupt_write [0 : 3]; // RW Interrupt Write with Auto Precharge
reg Data_in_enable;
reg Data_out_enable;
reg [1 : 0] Bank, Previous_bank;
reg [addr_bits - 1 : 0] Row;
reg [col_bits - 1 : 0] Col, Col_brst;
// Internal system clock
reg CkeZ, Sys_clk;
reg [21:0] dd;
// Commands Decode
wire Active_enable = ~Cs_n & ~Ras_n & Cas_n & We_n;
wire Aref_enable = ~Cs_n & ~Ras_n & ~Cas_n & We_n;
wire Burst_term = ~Cs_n & Ras_n & Cas_n & ~We_n;
wire Mode_reg_enable = ~Cs_n & ~Ras_n & ~Cas_n & ~We_n;
wire Prech_enable = ~Cs_n & ~Ras_n & Cas_n & ~We_n;
wire Read_enable = ~Cs_n & Ras_n & ~Cas_n & We_n;
wire Write_enable = ~Cs_n & Ras_n & ~Cas_n & ~We_n;
// Burst Length Decode
wire Burst_length_1 = ~Mode_reg[2] & ~Mode_reg[1] & ~Mode_reg[0];
wire Burst_length_2 = ~Mode_reg[2] & ~Mode_reg[1] & Mode_reg[0];
wire Burst_length_4 = ~Mode_reg[2] & Mode_reg[1] & ~Mode_reg[0];
wire Burst_length_8 = ~Mode_reg[2] & Mode_reg[1] & Mode_reg[0];
// CAS Latency Decode
wire Cas_latency_2 = ~Mode_reg[6] & Mode_reg[5] & ~Mode_reg[4];
wire Cas_latency_3 = ~Mode_reg[6] & Mode_reg[5] & Mode_reg[4];
// Write Burst Mode
wire Write_burst_mode = Mode_reg[9];
wire Debug; // Debug messages : 1 = On; 0 = Off
wire Dq_chk = Sys_clk & Data_in_enable; // Check setup/hold time for DQ
reg [31:0] mem_d;
event sdram_r,sdram_w,compare;
assign Dq = Dq_reg; // DQ buffer
// Commands Operation
`define ACT 0
`define NOP 1
`define READ 2
`define READ_A 3
`define WRITE 4
`define WRITE_A 5
`define PRECH 6
`define A_REF 7
`define BST 8
`define LMR 9
// // Timing Parameters for -75 (PC133) and CAS Latency = 2
// parameter tAC = 8; //test 6.5
// parameter tHZ = 7.0;
// parameter tOH = 2.7;
// parameter tMRD = 2.0; // 2 Clk Cycles
// parameter tRAS = 44.0;
// parameter tRC = 66.0;
// parameter tRCD = 20.0;
// parameter tRP = 20.0;
// parameter tRRD = 15.0;
// parameter tWRa = 7.5; // A2 Version - Auto precharge mode only (1 Clk + 7.5 ns)
// parameter tWRp = 0.0; // A2 Version - Precharge mode only (15 ns)
// Timing Parameters for -7 (PC143) and CAS Latency = 3
parameter tAC = 6.5; //test 6.5
parameter tHZ = 5.5;
parameter tOH = 2;
parameter tMRD = 2.0; // 2 Clk Cycles
parameter tRAS = 48.0;
parameter tRC = 70.0;
parameter tRCD = 20.0;
parameter tRP = 20.0;
parameter tRRD = 14.0;
parameter tWRa = 7.5; // A2 Version - Auto precharge mode only (1 Clk + 7.5 ns)
parameter tWRp = 0.0; // A2 Version - Precharge mode only (15 ns)
// Timing Check variable
integer MRD_chk;
integer WR_counter [0 : 3];
time WR_chk [0 : 3];
time RC_chk, RRD_chk;
time RAS_chk0, RAS_chk1, RAS_chk2, RAS_chk3;
time RCD_chk0, RCD_chk1, RCD_chk2, RCD_chk3;
time RP_chk0, RP_chk1, RP_chk2, RP_chk3;
integer test_file;
//*****display the command of the sdram**************************************
parameter Mode_Reg_Set =4'b0000;
parameter Auto_Refresh =4'b0001;
parameter Row_Active =4'b0011;
parameter Pre_Charge =4'b0010;
parameter PreCharge_All =4'b0010;
parameter Write =4'b0100;
parameter Write_Pre =4'b0100;
parameter Read =4'b0101;
parameter Read_Pre =4'b0101;
parameter Burst_Stop =4'b0110;
parameter Nop =4'b0111;
parameter Dsel =4'b1111;
wire [3:0] sdram_control;
reg cke_temp;
reg [8*13:1] sdram_command;
aaa@qq.com(posedge Clk)
cke_temp<=Cke;
assign sdram_control={Cs_n,Ras_n,Cas_n,We_n};
aaa@qq.com(sdram_control or cke_temp)
begin
case(sdram_control)
Mode_Reg_Set: sdram_command<="Mode_Reg_Set";
Auto_Refresh: sdram_command<="Auto_Refresh";
Row_Active: sdram_command<="Row_Active";
Pre_Charge: sdram_command<="Pre_Charge";
Burst_Stop: sdram_command<="Burst_Stop";
Dsel: sdram_command<="Dsel";
Write: if(cke_temp==1)
sdram_command<="Write";
else
sdram_command<="Write_suspend";
Read: if(cke_temp==1)
sdram_command<="Read";
else
sdram_command<="Read_suspend";
Nop: if(cke_temp==1)
sdram_command<="Nop";
else
sdram_command<="Self_refresh";
default: sdram_command<="Power_down";
endcase
end
//*****************************************************
initial
begin
//test_file=$fopen("test_file.txt");
end
initial
begin
Dq_reg = {data_bits{1'bz}};
{Data_in_enable, Data_out_enable} = 0;
{Act_b0, Act_b1, Act_b2, Act_b3} = 4'b0000;
{Pc_b0, Pc_b1, Pc_b2, Pc_b3} = 4'b0000;
{WR_chk[0], WR_chk[1], WR_chk[2], WR_chk[3]} = 0;
{WR_counter[0], WR_counter[1], WR_counter[2], WR_counter[3]} = 0;
{RW_interrupt_read[0], RW_interrupt_read[1], RW_interrupt_read[2], RW_interrupt_read[3]} = 0;
{RW_interrupt_write[0], RW_interrupt_write[1], RW_interrupt_write[2], RW_interrupt_write[3]} = 0;
{MRD_chk, RC_chk, RRD_chk} = 0;
{RAS_chk0, RAS_chk1, RAS_chk2, RAS_chk3} = 0;
{RCD_chk0, RCD_chk1, RCD_chk2, RCD_chk3} = 0;
{RP_chk0, RP_chk1, RP_chk2, RP_chk3} = 0;
$timeformat (-9, 0, " ns", 12);
//$readmemh("bank0.txt", Bank0);
//$readmemh("bank1.txt", Bank1);
//$readmemh("bank2.txt", Bank2);
//$readmemh("bank3.txt", Bank3);
/*
for(dd=0;dd<=mem_sizes;dd=dd+1)
begin
Bank0[dd]=dd[data_bits - 1 : 0];
Bank1[dd]=dd[data_bits - 1 : 0]+1;
Bank2[dd]=dd[data_bits - 1 : 0]+2;
Bank3[dd]=dd[data_bits - 1 : 0]+3;
end
*/
initial_sdram(0);
end
task initial_sdram;
input data_sign;
reg [3:0] data_sign;
for(dd=0;dd<=mem_sizes;dd=dd+1)
begin
mem_d = {data_sign,data_sign,data_sign,data_sign,data_sign,data_sign,data_sign,data_sign};
if(data_bits==16)
begin
Bank0[dd]=mem_d[15:0];
Bank1[dd]=mem_d[15:0];
Bank2[dd]=mem_d[15:0];
Bank3[dd]=mem_d[15:0];
end
else if(data_bits==32)
begin
Bank0[dd]=mem_d[31:0];
Bank1[dd]=mem_d[31:0];
Bank2[dd]=mem_d[31:0];
Bank3[dd]=mem_d[31:0];
end
end
endtask
// System clock generator
always
begin
@(posedge Clk)
begin
Sys_clk = CkeZ;
CkeZ = Cke;
end
@(negedge Clk)
begin
Sys_clk = 1'b0;
end
end
always @ (posedge Sys_clk) begin
// Internal Commamd Pipelined
Command[0] = Command[1];
Command[1] = Command[2];
Command[2] = Command[3];
Command[3] = `NOP;
Col_addr[0] = Col_addr[1];
Col_addr[1] = Col_addr[2];
Col_addr[2] = Col_addr[3];
Col_addr[3] = {col_bits{1'b0}};
Bank_addr[0] = Bank_addr[1];
Bank_addr[1] = Bank_addr[2];
Bank_addr[2] = Bank_addr[3];
Bank_addr[3] = 2'b0;
Bank_precharge[0] = Bank_precharge[1];
Bank_precharge[1] = Bank_precharge[2];
Bank_precharge[2] = Bank_precharge[3];
Bank_precharge[3] = 2'b0;
A10_precharge[0] = A10_precharge[1];
A10_precharge[1] = A10_precharge[2];
A10_precharge[2] = A10_precharge[3];
A10_precharge[3] = 1'b0;
// Dqm pipeline for Read
Dqm_reg0 = Dqm_reg1;
Dqm_reg1 = Dqm;
// Read or Write with Auto Precharge Counter
if (Auto_precharge[0] == 1'b1) begin
Count_precharge[0] = Count_precharge[0] + 1;
end
if (Auto_precharge[1] == 1'b1) begin
Count_precharge[1] = Count_precharge[1] + 1;
end
if (Auto_precharge[2] == 1'b1) begin
Count_precharge[2] = Count_precharge[2] + 1;
end
if (Auto_precharge[3] == 1'b1) begin
Count_precharge[3] = Count_precharge[3] + 1;
end
// tMRD Counter
MRD_chk = MRD_chk + 1;
// tWR Counter for Write
WR_counter[0] = WR_counter[0] + 1;
WR_counter[1] = WR_counter[1] + 1;
WR_counter[2] = WR_counter[2] + 1;
WR_counter[3] = WR_counter[3] + 1;
// Auto Refresh
if (Aref_enable == 1'b1) begin
if (Debug) $display ("at time %t AREF : Auto Refresh", $time);
// Auto Refresh to Auto Refresh
if (($time - RC_chk < tRC)&&Debug) begin
$display ("at time %t ERROR: tRC violation during Auto Refresh", $time);
end
// Precharge to Auto Refresh
if (($time - RP_chk0 < tRP || $time - RP_chk1 < tRP || $time - RP_chk2 < tRP || $time - RP_chk3 < tRP)&&Debug) begin
$display ("at time %t ERROR: tRP violation during Auto Refresh", $time);
end
// Precharge to Refresh
if (Pc_b0 == 1'b0 || Pc_b1 == 1'b0 || Pc_b2 == 1'b0 || Pc_b3 == 1'b0) begin
$display ("at time %t ERROR: All banks must be Precharge before Auto Refresh", $time);
end
// Record Current tRC time
RC_chk = $time;
end
// Load Mode Register
if (Mode_reg_enable == 1'b1) begin
// Decode CAS Latency, Burst Length, Burst Type, and Write Burst Mode
if (Pc_b0 == 1'b1 && Pc_b1 == 1'b1 && Pc_b2 == 1'b1 && Pc_b3 == 1'b1) begin
Mode_reg = Addr;
if (Debug) begin
$display ("at time %t LMR : Load Mode Register", $time);
// CAS Latency
if (Addr[6 : 4] == 3'b010)
$display (" CAS Latency = 2");
else if (Addr[6 : 4] == 3'b011)
$display (" CAS Latency = 3");
else
$display (" CAS Latency = Reserved");
// Burst Length
if (Addr[2 : 0] == 3'b000)
$display (" Burst Length = 1");
else if (Addr[2 : 0] == 3'b001)
$display (" Burst Length = 2");
else if (Addr[2 : 0] == 3'b010)
$display (" Burst Length = 4");
else if (Addr[2 : 0] == 3'b011)
$display (" Burst Length = 8");
else if (Addr[3 : 0] == 4'b0111)
$display (" Burst Length = Full");
else
$display (" Burst Length = Reserved");
// Burst Type
if (Addr[3] == 1'b0)
$display (" Burst Type = Sequential");
else if (Addr[3] == 1'b1)
$display (" Burst Type = Interleaved");
else
$display (" Burst Type = Reserved");
// Write Burst Mode
if (Addr[9] == 1'b0)
$display (" Write Burst Mode = Programmed Burst Length");
else if (Addr[9] == 1'b1)
$display (" Write Burst Mode = Single Location Access");
else
$display (" Write Burst Mode = Reserved");
end
end else begin
$display ("at time %t ERROR: all banks must be Precharge before Load Mode Register", $time);
end
// REF to LMR
if ($time - RC_chk < tRC) begin
$display ("at time %t ERROR: tRC violation during Load Mode Register", $time);
end
// LMR to LMR
if (MRD_chk < tMRD) begin
$display ("at time %t ERROR: tMRD violation during Load Mode Register", $time);
end
MRD_chk = 0;
end
// Active Block (Latch Bank Address and Row Address)
if (Active_enable == 1'b1) begin
if (Ba == 2'b00 && Pc_b0 == 1'b1) begin
{Act_b0, Pc_b0} = 2'b10;
B0_row_addr = Addr [addr_bits - 1 : 0];
RCD_chk0 = $time;
RAS_chk0 = $time;
if (Debug) $display ("at time %t ACT : Bank = 0 Row = %d", $time, Addr);
// Precharge to Activate Bank 0
if ($time - RP_chk0 < tRP) begin
$display ("at time %t ERROR: tRP violation during Activate bank 0", $time);
end
end else if (Ba == 2'b01 && Pc_b1 == 1'b1) begin
{Act_b1, Pc_b1} = 2'b10;
B1_row_addr = Addr [addr_bits - 1 : 0];
RCD_chk1 = $time;
RAS_chk1 = $time;
if (Debug) $display ("at time %t ACT : Bank = 1 Row = %d", $time, Addr);
// Precharge to Activate Bank 1
if ($time - RP_chk1 < tRP) begin
$display ("at time %t ERROR: tRP violation during Activate bank 1", $time);
end
end else if (Ba == 2'b10 && Pc_b2 == 1'b1) begin
{Act_b2, Pc_b2} = 2'b10;
B2_row_addr = Addr [addr_bits - 1 : 0];
RCD_chk2 = $time;
RAS_chk2 = $time;
if (Debug) $display ("at time %t ACT : Bank = 2 Row = %d", $time, Addr);
// Precharge to Activate Bank 2
if ($time - RP_chk2 < tRP) begin
$display ("at time %t ERROR: tRP violation during Activate bank 2", $time);
end
end else if (Ba == 2'b11 && Pc_b3 == 1'b1) begin
{Act_b3, Pc_b3} = 2'b10;
B3_row_addr = Addr [addr_bits - 1 : 0];
RCD_chk3 = $time;
RAS_chk3 = $time;
if (Debug) $display ("at time %t ACT : Bank = 3 Row = %d", $time, Addr);
// Precharge to Activate Bank 3
if ($time - RP_chk3 < tRP) begin
$display ("at time %t ERROR: tRP violation during Activate bank 3", $time);
end
end else if (Ba == 2'b00 && Pc_b0 == 1'b0) begin
$display ("at time %t ERROR: Bank 0 is not Precharged.", $time);
end else if (Ba == 2'b01 && Pc_b1 == 1'b0) begin
$display ("at time %t ERROR: Bank 1 is not Precharged.", $time);
end else if (Ba == 2'b10 && Pc_b2 == 1'b0) begin
$display ("at time %t ERROR: Bank 2 is not Precharged.", $time);
end else if (Ba == 2'b11 && Pc_b3 == 1'b0) begin
$display ("at time %t ERROR: Bank 3 is not Precharged.", $time);
end
// Active Bank A to Active Bank B
if ((Previous_bank != Ba) && ($time - RRD_chk < tRRD)) begin
$display ("at time %t ERROR: tRRD violation during Activate bank = %d", $time, Ba);
end
// Load Mode Register to Active
if (MRD_chk < tMRD ) begin
$display ("at time %t ERROR: tMRD violation during Activate bank = %d", $time, Ba);
end
// Auto Refresh to Activate
if (($time - RC_chk < tRC)&&Debug) begin
$display ("at time %t ERROR: tRC violation during Activate bank = %d", $time, Ba);
end
// Record variables for checking violation
RRD_chk = $time;
Previous_bank = Ba;
end
// Precharge Block
if (Prech_enable == 1'b1) begin
if (Addr[10] == 1'b1) begin
{Pc_b0, Pc_b1, Pc_b2, Pc_b3} = 4'b1111;
{Act_b0, Act_b1, Act_b2, Act_b3} = 4'b0000;
RP_chk0 = $time;
RP_chk1 = $time;
RP_chk2 = $time;
RP_chk3 = $time;
if (Debug) $display ("at time %t PRE : Bank = ALL",$time);
// Activate to Precharge all banks
if (($time - RAS_chk0 < tRAS) || ($time - RAS_chk1 < tRAS) ||
($time - RAS_chk2 < tRAS) || ($time - RAS_chk3 < tRAS)) begin
$display ("at time %t ERROR: tRAS violation during Precharge all bank", $time);
end
// tWR violation check for write
if (($time - WR_chk[0] < tWRp) || ($time - WR_chk[1] < tWRp) ||
($time - WR_chk[2] < tWRp) || ($time - WR_chk[3] < tWRp)) begin
$display ("at time %t ERROR: tWR violation during Precharge all bank", $time);
end
end else if (Addr[10] == 1'b0) begin
if (Ba == 2'b00) begin
{Pc_b0, Act_b0} = 2'b10;
RP_chk0 = $time;
if (Debug) $display ("at time %t PRE : Bank = 0",$time);
// Activate to Precharge Bank 0
if ($time - RAS_chk0 < tRAS) begin
$display ("at time %t ERROR: tRAS violation during Precharge bank 0", $time);
end
end else if (Ba == 2'b01) begin
{Pc_b1, Act_b1} = 2'b10;
RP_chk1 = $time;
if (Debug) $display ("at time %t PRE : Bank = 1",$time);
// Activate to Precharge Bank 1
if ($time - RAS_chk1 < tRAS) begin
$display ("at time %t ERROR: tRAS violation during Precharge bank 1", $time);
end
end else if (Ba == 2'b10) begin
{Pc_b2, Act_b2} = 2'b10;
RP_chk2 = $time;
if (Debug) $display ("at time %t PRE : Bank = 2",$time);
// Activate to Precharge Bank 2
if ($time - RAS_chk2 < tRAS) begin
$display ("at time %t ERROR: tRAS violation during Precharge bank 2", $time);
end
end else if (Ba == 2'b11) begin
{Pc_b3, Act_b3} = 2'b10;
RP_chk3 = $time;
if (Debug) $display ("at time %t PRE : Bank = 3",$time);
// Activate to Precharge Bank 3
if ($time - RAS_chk3 < tRAS) begin
$display ("at time %t ERROR: tRAS violation during Precharge bank 3", $time);
end
end
// tWR violation check for write
if ($time - WR_chk[Ba] < tWRp) begin
$display ("at time %t ERROR: tWR violation during Precharge bank %d", $time, Ba);
end
end
// Terminate a Write Immediately (if same bank or all banks)
if (Data_in_enable == 1'b1 && (Bank == Ba || Addr[10] == 1'b1)) begin
Data_in_enable = 1'b0;
end
// Precharge Command Pipeline for Read
if (Cas_latency_3 == 1'b1) begin
Command[2] = `PRECH;
Bank_precharge[2] = Ba;
A10_precharge[2] = Addr[10];
end else if (Cas_latency_2 == 1'b1) begin
Command[1] = `PRECH;
Bank_precharge[1] = Ba;
A10_precharge[1] = Addr[10];
end
end
// Burst terminate
if (Burst_term == 1'b1) begin
// Terminate a Write Immediately
if (Data_in_enable == 1'b1) begin
Data_in_enable = 1'b0;
end
// Terminate a Read Depend on CAS Latency
if (Cas_latency_3 == 1'b1) begin
Command[2] = `BST;
end else if (Cas_latency_2 == 1'b1) begin
Command[1] = `BST;
end
if (Debug) $display ("at time %t BST : Burst Terminate",$time);
end
// Read, Write, Column Latch
if (Read_enable == 1'b1 || Write_enable == 1'b1) begin
// Check to see if bank is open (ACT)
if ((Ba == 2'b00 && Pc_b0 == 1'b1) || (Ba == 2'b01 && Pc_b1 == 1'b1) ||
(Ba == 2'b10 && Pc_b2 == 1'b1) || (Ba == 2'b11 && Pc_b3 == 1'b1)) begin
$display("at time %t ERROR: Cannot Read or Write - Bank %d is not Activated", $time, Ba);
end
// Activate to Read or Write
if ((Ba == 2'b00) && ($time - RCD_chk0 < tRCD))
$display("at time %t ERROR: tRCD violation during Read or Write to Bank 0", $time);
if ((Ba == 2'b01) && ($time - RCD_chk1 < tRCD))
$display("at time %t ERROR: tRCD violation during Read or Write to Bank 1", $time);
if ((Ba == 2'b10) && ($time - RCD_chk2 < tRCD))
$display("at time %t ERROR: tRCD violation during Read or Write to Bank 2", $time);
if ((Ba == 2'b11) && ($time - RCD_chk3 < tRCD))
$display("at time %t ERROR: tRCD violation during Read or Write to Bank 3", $time);
// Read Command
if (Read_enable == 1'b1) begin
// CAS Latency pipeline
if (Cas_latency_3 == 1'b1) begin
if (Addr[10] == 1'b1) begin
Command[2] = `READ_A;
end else begin
Command[2] = `READ;
end
Col_addr[2] = Addr;
Bank_addr[2] = Ba;
end else if (Cas_latency_2 == 1'b1) begin
if (Addr[10] == 1'b1) begin
Command[1] = `READ_A;
end else begin
Command[1] = `READ;
end
Col_addr[1] = Addr;
Bank_addr[1] = Ba;
end
// Read interrupt Write (terminate Write immediately)
if (Data_in_enable == 1'b1) begin
Data_in_enable = 1'b0;
end
// Write Command
end else if (Write_enable == 1'b1) begin
if (Addr[10] == 1'b1) begin
Command[0] = `WRITE_A;
end else begin
Command[0] = `WRITE;
end
Col_addr[0] = Addr;
Bank_addr[0] = Ba;
// Write interrupt Write (terminate Write immediately)
if (Data_in_enable == 1'b1) begin
Data_in_enable = 1'b0;
end
// Write interrupt Read (terminate Read immediately)
if (Data_out_enable == 1'b1) begin
Data_out_enable = 1'b0;
end
end
// Interrupting a Write with Autoprecharge
if (Auto_precharge[Bank] == 1'b1 && Write_precharge[Bank] == 1'b1) begin
RW_interrupt_write[Bank] = 1'b1;
if (Debug) $display ("at time %t NOTE : Read/Write Bank %d interrupt Write Bank %d with Autoprecharge", $time, Ba, Bank);
end
// Interrupting a Read with Autoprecharge
if (Auto_precharge[Bank] == 1'b1 && Read_precharge[Bank] == 1'b1) begin
RW_interrupt_read[Bank] = 1'b1;
if (Debug) $display ("at time %t NOTE : Read/Write Bank %d interrupt Read Bank %d with Autoprecharge", $time, Ba, Bank);
end
// Read or Write with Auto Precharge
if (Addr[10] == 1'b1) begin
Auto_precharge[Ba] = 1'b1;
Count_precharge[Ba] = 0;
if (Read_enable == 1'b1) begin
Read_precharge[Ba] = 1'b1;
end else if (Write_enable == 1'b1) begin
Write_precharge[Ba] = 1'b1;
end
end
end
// Read with Auto Precharge Calculation
// The device start internal precharge:
// 1. CAS Latency - 1 cycles before last burst
// and 2. Meet minimum tRAS requirement
// or 3. Interrupt by a Read or Write (with or without AutoPrecharge)
if ((Auto_precharge[0] == 1'b1) && (Read_precharge[0] == 1'b1)) begin
if ((($time - RAS_chk0 >= tRAS) && // Case 2
((Burst_length_1 == 1'b1 && Count_precharge[0] >= 1) || // Case 1
(Burst_length_2 == 1'b1 && Count_precharge[0] >= 2) ||
(Burst_length_4 == 1'b1 && Count_precharge[0] >= 4) ||
(Burst_length_8 == 1'b1 && Count_precharge[0] >= 8))) ||
(RW_interrupt_read[0] == 1'b1)) begin // Case 3
Pc_b0 = 1'b1;
Act_b0 = 1'b0;
RP_chk0 = $time;
Auto_precharge[0] = 1'b0;
Read_precharge[0] = 1'b0;
RW_interrupt_read[0] = 1'b0;
if (Debug) $display ("at time %t NOTE : Start Internal Auto Precharge for Bank 0", $time);
end
end
if ((Auto_precharge[1] == 1'b1) && (Read_precharge[1] == 1'b1)) begin
if ((($time - RAS_chk1 >= tRAS) &&
((Burst_length_1 == 1'b1 && Count_precharge[1] >= 1) ||
(Burst_length_2 == 1'b1 && Count_precharge[1] >= 2) ||
(Burst_length_4 == 1'b1 && Count_precharge[1] >= 4) ||
(Burst_length_8 == 1'b1 && Count_precharge[1] >= 8))) ||
(RW_interrupt_read[1] == 1'b1)) begin
Pc_b1 = 1'b1;
Act_b1 = 1'b0;
RP_chk1 = $time;
Auto_precharge[1] = 1'b0;
Read_precharge[1] = 1'b0;
RW_interrupt_read[1] = 1'b0;
if (Debug) $display ("at time %t NOTE : Start Internal Auto Precharge for Bank 1", $time);
end
end
if ((Auto_precharge[2] == 1'b1) && (Read_precharge[2] == 1'b1)) begin
if ((($time - RAS_chk2 >= tRAS) &&
((Burst_length_1 == 1'b1 && Count_precharge[2] >= 1) ||
(Burst_length_2 == 1'b1 && Count_precharge[2] >= 2) ||
(Burst_length_4 == 1'b1 && Count_precharge[2] >= 4) ||
(Burst_length_8 == 1'b1 && Count_precharge[2] >= 8))) ||
(RW_interrupt_read[2] == 1'b1)) begin
Pc_b2 = 1'b1;
Act_b2 = 1'b0;
RP_chk2 = $time;
Auto_precharge[2] = 1'b0;
Read_precharge[2] = 1'b0;
RW_interrupt_read[2] = 1'b0;
if (Debug) $display ("at time %t NOTE : Start Internal Auto Precharge for Bank 2", $time);
end
end
if ((Auto_precharge[3] == 1'b1) && (Read_precharge[3] == 1'b1)) begin
if ((($time - RAS_chk3 >= tRAS) &&
((Burst_length_1 == 1'b1 && Count_precharge[3] >= 1) ||
(Burst_length_2 == 1'b1 && Count_precharge[3] >= 2) ||
(Burst_length_4 == 1'b1 && Count_precharge[3] >= 4) ||
(Burst_length_8 == 1'b1 && Count_precharge[3] >= 8))) ||
(RW_interrupt_read[3] == 1'b1)) begin
Pc_b3 = 1'b1;
Act_b3 = 1'b0;
RP_chk3 = $time;
Auto_precharge[3] = 1'b0;
Read_precharge[3] = 1'b0;
RW_interrupt_read[3] = 1'b0;
if (Debug) $display ("at time %t NOTE : Start Internal Auto Precharge for Bank 3", $time);
end
end
// Internal Precharge or Bst
if (Command[0] == `PRECH) begin // Precharge terminate a read with same bank or all banks
if (Bank_precharge[0] == Bank || A10_precharge[0] == 1'b1) begin
if (Data_out_enable == 1'b1) begin
Data_out_enable = 1'b0;
end
end
end else if (Command[0] == `BST) begin // BST terminate a read to current bank
if (Data_out_enable == 1'b1) begin
Data_out_enable = 1'b0;
end
end
if (Data_out_enable == 1'b0) begin
Dq_reg <= #tOH {data_bits{1'bz}};
end
// Detect Read or Write command
if (Command[0] == `READ || Command[0] == `READ_A) begin
Bank = Bank_addr[0];
Col = Col_addr[0];
Col_brst = Col_addr[0];
if (Bank_addr[0] == 2'b00) begin
Row = B0_row_addr;
end else if (Bank_addr[0] == 2'b01) begin
Row = B1_row_addr;
end else if (Bank_addr[0] == 2'b10) begin
Row = B2_row_addr;
end else if (Bank_addr[0] == 2'b11) begin
Row = B3_row_addr;
end
Burst_counter = 0;
Data_in_enable = 1'b0;
Data_out_enable = 1'b1;
end else if (Command[0] == `WRITE || Command[0] == `WRITE_A) begin
Bank = Bank_addr[0];
Col = Col_addr[0];
Col_brst = Col_addr[0];
if (Bank_addr[0] == 2'b00) begin
Row = B0_row_addr;
end else if (Bank_addr[0] == 2'b01) begin
Row = B1_row_addr;
end else if (Bank_addr[0] == 2'b10) begin
Row = B2_row_addr;
end else if (Bank_addr[0] == 2'b11) begin
Row = B3_row_addr;
end
Burst_counter = 0;
Data_in_enable = 1'b1;
Data_out_enable = 1'b0;
end
// DQ buffer (Driver/Receiver)
if (Data_in_enable == 1'b1) begin // Writing Data to Memory
// Array buffer
if (Bank == 2'b00) Dq_dqm [data_bits - 1 : 0] = Bank0 [{Row, Col}];
if (Bank == 2'b01) Dq_dqm [data_bits - 1 : 0] = Bank1 [{Row, Col}];
if (Bank == 2'b10) Dq_dqm [data_bits - 1 : 0] = Bank2 [{Row, Col}];
if (Bank == 2'b11) Dq_dqm [data_bits - 1 : 0] = Bank3 [{Row, Col}];
// Dqm operation
if (Dqm[0] == 1'b0) Dq_dqm [ 7 : 0] = Dq [ 7 : 0];
if (Dqm[1] == 1'b0) Dq_dqm [15 : 8] = Dq [15 : 8];
//if (Dqm[2] == 1'b0) Dq_dqm [23 : 16] = Dq [23 : 16];
// if (Dqm[3] == 1'b0) Dq_dqm [31 : 24] = Dq [31 : 24];
// Write to memory
if (Bank == 2'b00) Bank0 [{Row, Col}] = Dq_dqm [data_bits - 1 : 0];
if (Bank == 2'b01) Bank1 [{Row, Col}] = Dq_dqm [data_bits - 1 : 0];
if (Bank == 2'b10) Bank2 [{Row, Col}] = Dq_dqm [data_bits - 1 : 0];
if (Bank == 2'b11) Bank3 [{Row, Col}] = Dq_dqm [data_bits - 1 : 0];
if (Bank == 2'b11 && Row==10'h3 && Col[7:4]==4'h4)
$display("at time %t WRITE: Bank = %d Row = %d, Col = %d, Data = Hi-Z due to DQM", $time, Bank, Row, Col);
//$fdisplay(test_file,"bank:%h row:%h col:%h write:%h",Bank,Row,Col,Dq_dqm);
// Output result
if (Dqm == 4'b1111) begin
if (Debug) $display("at time %t WRITE: Bank = %d Row = %d, Col = %d, Data = Hi-Z due to DQM", $time, Bank, Row, Col);
end else begin
if (Debug) $display("at time %t WRITE: Bank = %d Row = %d, Col = %d, Data = %d, Dqm = %b", $time, Bank, Row, Col, Dq_dqm, Dqm);
// Record tWR time and reset counter
WR_chk [Bank] = $time;
WR_counter [Bank] = 0;
end
// Advance burst counter subroutine
#tHZ Burst;
end else if (Data_out_enable == 1'b1) begin // Reading Data from Memory
//$display("%h , %h, %h",Bank0,Row,Col);
// Array buffer
if (Bank == 2'b00) Dq_dqm [data_bits - 1 : 0] = Bank0 [{Row, Col}];
if (Bank == 2'b01) Dq_dqm [data_bits - 1 : 0] = Bank1 [{Row, Col}];
if (Bank == 2'b10) Dq_dqm [data_bits - 1 : 0] = Bank2 [{Row, Col}];
if (Bank == 2'b11) Dq_dqm [data_bits - 1 : 0] = Bank3 [{Row, Col}];
// Dqm operation
if (Dqm_reg0[0] == 1'b1) Dq_dqm [ 7 : 0] = 8'bz;
if (Dqm_reg0[1] == 1'b1) Dq_dqm [15 : 8] = 8'bz;
if (Dqm_reg0[2] == 1'b1) Dq_dqm [23 : 16] = 8'bz;
if (Dqm_reg0[3] == 1'b1) Dq_dqm [31 : 24] = 8'bz;
// Display result
Dq_reg [data_bits - 1 : 0] = #tAC Dq_dqm [data_bits - 1 : 0];
if (Dqm_reg0 == 4'b1111) begin
if (Debug) $display("at time %t READ : Bank = %d Row = %d, Col = %d, Data = Hi-Z due to DQM", $time, Bank, Row, Col);
end else begin
if (Debug) $display("at time %t READ : Bank = %d Row = %d, Col = %d, Data = %d, Dqm = %b", $time, Bank, Row, Col, Dq_reg, Dqm_reg0);
end
// Advance burst counter subroutine
Burst;
end
end
// Write with Auto Precharge Calculation
// The device start internal precharge:
// 1. tWR Clock after last burst
// and 2. Meet minimum tRAS requirement
// or 3. Interrupt by a Read or Write (with or without AutoPrecharge)
always @ (WR_counter[0]) begin
if ((Auto_precharge[0] == 1'b1) && (Write_precharge[0] == 1'b1)) begin
if ((($time - RAS_chk0 >= tRAS) && // Case 2
(((Burst_length_1 == 1'b1 || Write_burst_mode == 1'b1) && Count_precharge [0] >= 1) || // Case 1
(Burst_length_2 == 1'b1 && Count_precharge [0] >= 2) ||
(Burst_length_4 == 1'b1 && Count_precharge [0] >= 4) ||
(Burst_length_8 == 1'b1 && Count_precharge [0] >= 8))) ||
(RW_interrupt_write[0] == 1'b1 && WR_counter[0] >= 2)) begin // Case 3 (stop count when interrupt)
Auto_precharge[0] = 1'b0;
Write_precharge[0] = 1'b0;
RW_interrupt_write[0] = 1'b0;
#tWRa; // Wait for tWR
Pc_b0 = 1'b1;
Act_b0 = 1'b0;
RP_chk0 = $time;
if (Debug) $display ("at time %t NOTE : Start Internal Auto Precharge for Bank 0", $time);
end
end
end
always @ (WR_counter[1]) begin
if ((Auto_precharge[1] == 1'b1) && (Write_precharge[1] == 1'b1)) begin
if ((($time - RAS_chk1 >= tRAS) &&
(((Burst_length_1 == 1'b1 || Write_burst_mode == 1'b1) && Count_precharge [1] >= 1) ||
(Burst_length_2 == 1'b1 && Count_precharge [1] >= 2) ||
(Burst_length_4 == 1'b1 && Count_precharge [1] >= 4) ||
(Burst_length_8 == 1'b1 && Count_precharge [1] >= 8))) ||
(RW_interrupt_write[1] == 1'b1 && WR_counter[1] >= 2)) begin
Auto_precharge[1] = 1'b0;
Write_precharge[1] = 1'b0;
RW_interrupt_write[1] = 1'b0;
#tWRa; // Wait for tWR
Pc_b1 = 1'b1;
Act_b1 = 1'b0;
RP_chk1 = $time;
if (Debug) $display ("at time %t NOTE : Start Internal Auto Precharge for Bank 1", $time);
end
end
end
always @ (WR_counter[2]) begin
if ((Auto_precharge[2] == 1'b1) && (Write_precharge[2] == 1'b1)) begin
if ((($time - RAS_chk2 >= tRAS) &&
(((Burst_length_1 == 1'b1 || Write_burst_mode == 1'b1) && Count_precharge [2] >= 1) ||
(Burst_length_2 == 1'b1 && Count_precharge [2] >= 2) ||
(Burst_length_4 == 1'b1 && Count_precharge [2] >= 4) ||
(Burst_length_8 == 1'b1 && Count_precharge [2] >= 8))) ||
(RW_interrupt_write[2] == 1'b1 && WR_counter[2] >= 2)) begin
Auto_precharge[2] = 1'b0;
Write_precharge[2] = 1'b0;
RW_interrupt_write[2] = 1'b0;
#tWRa; // Wait for tWR
Pc_b2 = 1'b1;
Act_b2 = 1'b0;
RP_chk2 = $time;
if (Debug) $display ("at time %t NOTE : Start Internal Auto Precharge for Bank 2", $time);
end
end
end
always @ (WR_counter[3]) begin
if ((Auto_precharge[3] == 1'b1) && (Write_precharge[3] == 1'b1)) begin
if ((($time - RAS_chk3 >= tRAS) &&
(((Burst_length_1 == 1'b1 || Write_burst_mode == 1'b1) && Count_precharge [3] >= 1) ||
(Burst_length_2 == 1'b1 && Count_precharge [3] >= 2) ||
(Burst_length_4 == 1'b1 && Count_precharge [3] >= 4) ||
(Burst_length_8 == 1'b1 && Count_precharge [3] >= 8))) ||
(RW_interrupt_write[3] == 1'b1 && WR_counter[3] >= 2)) begin
Auto_precharge[3] = 1'b0;
Write_precharge[3] = 1'b0;
RW_interrupt_write[3] = 1'b0;
#tWRa; // Wait for tWR
Pc_b3 = 1'b1;
Act_b3 = 1'b0;
RP_chk3 = $time;
if (Debug) $display ("at time %t NOTE : Start Internal Auto Precharge for Bank 3", $time);
end
end
end
task Burst;
begin
// Advance Burst Counter
Burst_counter = Burst_counter + 1;
// Burst Type
if (Mode_reg[3] == 1'b0) begin // Sequential Burst
Col_temp = Col + 1;
end else if (Mode_reg[3] == 1'b1) begin // Interleaved Burst
Col_temp[2] = Burst_counter[2] ^ Col_brst[2];
Col_temp[1] = Burst_counter[1] ^ Col_brst[1];
Col_temp[0] = Burst_counter[0] ^ Col_brst[0];
end
// Burst Length
if (Burst_length_2) begin // Burst Length = 2
Col [0] = Col_temp [0];
end else if (Burst_length_4) begin // Burst Length = 4
Col [1 : 0] = Col_temp [1 : 0];
end else if (Burst_length_8) begin // Burst Length = 8
Col [2 : 0] = Col_temp [2 : 0];
end else begin // Burst Length = FULL
Col = Col_temp;
end
// Burst Read Single Write
if (Write_burst_mode == 1'b1) begin
Data_in_enable = 1'b0;
end
// Data Counter
if (Burst_length_1 == 1'b1) begin
if (Burst_counter >= 1) begin
Data_in_enable = 1'b0;
Data_out_enable = 1'b0;
end
end else if (Burst_length_2 == 1'b1) begin
if (Burst_counter >= 2) begin
Data_in_enable = 1'b0;
Data_out_enable = 1'b0;
end
end else if (Burst_length_4 == 1'b1) begin
if (Burst_counter >= 4) begin
Data_in_enable = 1'b0;
Data_out_enable = 1'b0;
end
end else if (Burst_length_8 == 1'b1) begin
if (Burst_counter >= 8) begin
Data_in_enable = 1'b0;
Data_out_enable = 1'b0;
end
end
end
endtask
//**********************将SDRAM内的数据直接输出到外部文件*******************************//
/*
integer sdram_data,ind;
aaa@qq.com(sdram_r)
begin
sdram_data=$fopen("sdram_data.txt");
$display("Sdram dampout begin ",sdram_data);
// $fdisplay(sdram_data,"Bank0:");
for(ind=0;ind<=mem_sizes;ind=ind+1)
$fdisplay(sdram_data,"%h %b",ind,Bank0[ind]);
// $fdisplay(sdram_data,"Bank1:");
for(ind=0;ind<=mem_sizes;ind=ind+1)
$fdisplay(sdram_data,"%h %b",ind,Bank1[ind]);
// $fdisplay(sdram_data,"Bank2:");
for(ind=0;ind<=mem_sizes;ind=ind+1)
$fdisplay(sdram_data,"%h %b",ind,Bank2[ind]);
// $fdisplay(sdram_data,"Bank3:");
for(ind=0;ind<=mem_sizes;ind=ind+1)
$fdisplay(sdram_data,"%h %b",ind,Bank3[ind]);
$fclose("sdram_data.txt");
//->compare;
end
*/
integer sdram_data,sdram_mem;
reg [23:0] aa,cc;
reg [18:0] bb,ee;
aaa@qq.com(sdram_r)
begin
$display("Sdram dampout begin ",$realtime);
sdram_data=$fopen("sdram_data.txt");
for(aa=0;aa<4*(mem_sizes+1);aa=aa+1)
begin
bb=aa[18:0];
if(aa<=mem_sizes)
$fdisplay(sdram_data,"%0d %0h",aa,Bank0[bb]);
else if(aa<=2*mem_sizes+1)
$fdisplay(sdram_data,"%0d %0h",aa,Bank1[bb]);
else if(aa<=3*mem_sizes+2)
$fdisplay(sdram_data,"%0d %0h",aa,Bank2[bb]);
else
$fdisplay(sdram_data,"%0d %0h",aa,Bank3[bb]);
end
$fclose("sdram_data.txt");
sdram_mem=$fopen("sdram_mem.txt");
for(cc=0;cc<4*(mem_sizes+1);cc=cc+1)
begin
ee=cc[18:0];
if(cc<=mem_sizes)
$fdisplay(sdram_mem,"%0h",Bank0[ee]);
else if(cc<=2*mem_sizes+1)
$fdisplay(sdram_mem,"%0h",Bank1[ee]);
else if(cc<=3*mem_sizes+2)
$fdisplay(sdram_mem,"%0h",Bank2[ee]);
else
$fdisplay(sdram_mem,"%0h",Bank3[ee]);
end
$fclose("sdram_mem.txt");
end
// // Timing Parameters for -75 (PC133) and CAS Latency = 2
// specify
// specparam
//// tAH = 0.8, // Addr, Ba Hold Time
//// tAS = 1.5, // Addr, Ba Setup Time
//// tCH = 2.5, // Clock High-Level Width
//// tCL = 2.5, // Clock Low-Level Width
////// tCK = 10.0, // Clock Cycle Time 100mhz
////// tCK = 7.5, // Clock Cycle Time 133mhz
//// tCK = 7, // Clock Cycle Time 143mhz
//// tDH = 0.8, // Data-in Hold Time
//// tDS = 1.5, // Data-in Setup Time
//// tCKH = 0.8, // CKE Hold Time
//// tCKS = 1.5, // CKE Setup Time
//// tCMH = 0.8, // CS#, RAS#, CAS#, WE#, DQM# Hold Time
//// tCMS = 1.5; // CS#, RAS#, CAS#, WE#, DQM# Setup Time
// tAH = 1, // Addr, Ba Hold Time
// tAS = 1.5, // Addr, Ba Setup Time
// tCH = 1, // Clock High-Level Width
// tCL = 3, // Clock Low-Level Width
//// tCK = 10.0, // Clock Cycle Time 100mhz
//// tCK = 7.5, // Clock Cycle Time 133mhz
// tCK = 7, // Clock Cycle Time 143mhz
// tDH = 1, // Data-in Hold Time
// tDS = 2, // Data-in Setup Time
// tCKH = 1, // CKE Hold Time
// tCKS = 2, // CKE Setup Time
// tCMH = 0.8, // CS#, RAS#, CAS#, WE#, DQM# Hold Time
// tCMS = 1.5; // CS#, RAS#, CAS#, WE#, DQM# Setup Time
// $width (posedge Clk, tCH);
// $width (negedge Clk, tCL);
// $period (negedge Clk, tCK);
// $period (posedge Clk, tCK);
// $setuphold(posedge Clk, Cke, tCKS, tCKH);
// $setuphold(posedge Clk, Cs_n, tCMS, tCMH);
// $setuphold(posedge Clk, Cas_n, tCMS, tCMH);
// $setuphold(posedge Clk, Ras_n, tCMS, tCMH);
// $setuphold(posedge Clk, We_n, tCMS, tCMH);
// $setuphold(posedge Clk, Addr, tAS, tAH);
// $setuphold(posedge Clk, Ba, tAS, tAH);
// $setuphold(posedge Clk, Dqm, tCMS, tCMH);
// $setuphold(posedge Dq_chk, Dq, tDS, tDH);
// endspecify
endmodule
SDRAM的测试要有仿真SDRAM模型文件,(引入上述文件作为真实的SDRAM模型)。
功能仿真
.main clear :清空命令行
不要用simulate 用 simulate without…
如何快速检查时序对不对:看仿真模块的输出端口对不对就好,和数据手册时序对比。
看modelsim打印信息,初始化成功。
总结
- 本文是基于(串口SDRAM控制设计架构,大家可以参考一下)进一步写的。
- 本文从功能原理,波形设计,代码设计,仿真分析比较全面设计。对于初学者有很大帮助哈。
- 本博客还引用了,我在设计时候觉得有用的技巧,欢迎大家补充哈。
- 学习明德扬架构觉得非常有用,本文采取明德扬计数器架构设计。
- 创作不易,认为文章有帮助的同学们可以关注、点赞、转发支持。
- 欢迎大家在评论区进行评论,一起分享设计
- 对于,可以加入下面的群,一起探讨哈。