欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  数据库

mysql innodb索引原理的详细介绍(代码示例)

程序员文章站 2022-04-01 22:32:59
...

本篇文章给大家带来的内容是关于mysql innodb索引原理的详细介绍(代码示例),有一定的参考价值,有需要的朋友可以参考一下,希望对你有所帮助。

聚集索引(clustered index)

innodb存储引擎表是索引组织表,表中数据按照主键顺序存放。其聚集索引就是按照每张表的主键顺序构造一颗B+树,其叶子结点中存放的就是整张表的行记录数据,这些叶子节点成为数据页。(相关推荐:MySQL教程

聚集索引的存储并不是物理上连续的,而是逻辑上连续的,叶子结点间按照主键顺序排序,通过双向链表连接。多数情况下,查询优化器倾向于采用聚集索引,因为聚集索引能在叶子结点直接找到数据,并且因为定义了数据的逻辑顺序,能特别快的访问针对范围值的查询。

聚集索引的这个特性决定了索引组织表中的数据也是索引的一部分。由于表里的数据只能按照一颗B+树排序,因此一张表只能有一个聚簇索引。

在Innodb中,聚簇索引默认就是主键索引。如果没有主键,则按照下列规则来建聚簇索引:

  • 没有主键时,会用一个非空并且唯一的索引列做为主键,成为此表的聚簇索引;
  • 如果没有这样的索引,InnoDB会隐式定义一个主键来作为聚簇索引。

由于主键使用了聚簇索引,如果主键是自增id,那么对应的数据也会相邻地存放在磁盘上,写入性能较高。如果是uuid等字符串形式,频繁的插入会使innodb频繁地移动磁盘块,写入性能就比较低了。

B+树(多路平衡查找树)

我们知道了innodb引擎索引使用了B+树结构,那么为什么不是其他类型树结构,例如二叉树呢?

计算机在存储数据的时候,有最小存储单元,这就好比人民币流通最小单位是分一样。文件系统的最小单元是块,一个块的大小是4k(这个值根据系统不同并且可设置),InnoDB存储引擎也有自己的最小储存单元—页(Page),一个页的大小是16K(这个值也是可设置的)。

文件系统中一个文件大小只有1个字节,但不得不占磁盘上4KB的空间。同理,innodb的所有数据文件的大小始终都是16384(16k)的整数倍。

mysql innodb索引原理的详细介绍(代码示例)

所以在MySQL中,存放索引的一个块节点占16k,mysql每次IO操作会利用系统的预读能力一次加载16K。这样,如果这一个节点只放1个索引值是非常浪费的,因为一次IO只能获取一个索引值,所以不能使用二叉树。

B+树是多路查找树,一个节点能放n个值,n = 16K / 每个索引值的大小。
例如索引字段大小1Kb,这时候每个节点能放的索引值理论上是16个,这种情况下,二叉树一次IO只能加载一个索引值,而B+树则能加载16个。

B+树的路数为n+1,n是每个节点存在的值数量,例如每个节点存放16个值,那么这棵树就是17路。

从这里也能看出,B+树节点可存储多个值,所以B+树索引并不能找到一个给定键值的具体行。B+树只能找到存放数据行的具体页,然后把页读入到内存中,再在内存中查找指定的数据。

附:B树和B+树的区别在于,B+树的非叶子结点只包含导航信息,不包含实际的值,所有的叶子结点和相连的节点使用链表相连,便于区间查找和遍历。

辅助索引

也称为非聚集索引,其叶子节点不包含行记录的全部数据,叶子结点除了包含键值以外,每个叶子结点中的索引行还包含一个书签,该书签就是相应行的聚集索引键。

如下图可以表示辅助索引和聚集索引的关系(图片源自网络,看大概意思即可):

mysql innodb索引原理的详细介绍(代码示例)

当通过辅助索引来寻找数据时,innodb存储引擎会通过辅助索引叶子节点获得只想主键索引的主键,既然后再通过主键索引找到完整的行记录。

例如在一棵高度为3的辅助索引树中查找数据,那需要对这颗辅助索引树进行3次IO找到指定主键,如果聚集索引树的高度同样为3,那么还需要对聚集索引树进行3次查找,最终找到一个完整的行数据所在的页,因此一共需要6次IO访问来得到最终的数据页。

创建的索引,如联合索引、唯一索引等,都属于非聚簇索引。

联合索引

联合索引是指对表上的多个列进行索引。联合索引也是一颗B+树,不同的是联合索引的键值数量不是1,而是大于等于2。

例如有user表,字段为id,age,name,现发现如下两条sql使用频率最多:

Select * from user where age = ? ;
Select * from user where age = ? and name = ?;

这时候不需要为age和name单独建两个索引,只需要建如下一个联合索引即可:

create index idx_age_name on user(age, name)

联合索引的另一个好处已经对第二个键值进行了排序处理,有时候可以避免多一次的排序操作。

覆盖索引

覆盖索引,即从辅助索引中就可以得到查询所需要的所有字段值,而不需要查询聚集索引中的记录。覆盖索引的好处是辅助索引不包含整行记录的所有信息,故其大小要远小于聚集索引,因此可以减少大量的IO操作。

例如上面有联合索引(age,name),如果如下:

select age,name from user where age=?

就能使用覆盖索引了。

覆盖索引的另一个好处是对于统计问题,例如:

select count(*) from user

innodb存储引擎并不会选择通过查询聚集索引来进行统计。由于user表上还有辅助索引,而辅助索引远小于聚集索引,选择辅助索引可以减少IO操作。

注意事项

  • 索引只建合适的,不建多余的
因为每当增删数据时,B+树都要进行调整,如果建立多个索引,多个B+树都要进行调整,而树越多、结构越庞大,这个调整越是耗时耗资源。如果减少了这些不必要的索引,磁盘的使用率可能会大大降低。
  • 索引列的数据长度能少则少。

索引数据长度越小,每个块中存储的索引数量越多,一次IO获取的值更多。

  • 匹配列前缀可用到索引 like 9999%,like %9999%、like %9999用不到索引;
  • Where 条件中in和or可以使用索引, not in 和 <>操作无法使用索引;

如果是not in或<>,面对B+树,引擎根本不知道应该从哪个节点入手。

  • 匹配范围值,order by 也可用到索引;
  • 多用指定列查询,只返回自己想到的数据列,少用select *;

不需要查询无用字段,并且不使用*可能还会命中覆盖索引哦;

  • 联合索引中如果不是按照索引最左列开始查找,无法使用索引;

最左匹配原则;

  • 联合索引中精确匹配最左前列并范围匹配另外一列可以用到索引;
  • 联合索引中如果查询中有某个列的范围查询,则其右边的所有列都无法使用索

以上就是mysql innodb索引原理的详细介绍(代码示例)的详细内容,更多请关注其它相关文章!