HadoopMap中跨行Block和InputSplit如何处理?
比如对于那么对于一个记录行形式的文本大于128M时,HDFS将会分成多块存储(block),同时分片并非到每行行尾。这样就会产生两个问题
1. Hadoop的一个Block默认是128M,那么对于一个记录行形式的文本,会不会造成一行记录被分到两个Block当中?
2. 在把文件从Block中读取出来进行切分时,会不会造成一行记录被分成两个InputSplit,如果被分成两个InputSplit,这样一个InputSplit里面就有一行不完整的数据,那么处理这个InputSplit的Mapper会不会得出不正确的结果?
对于上面的两个问题,首先再次明确两个概念:Block和InputSplit:
Block是HDFS存储文件的单位(默认是128M);
InputSplit是MapReduce对文件进行处理和运算的输入单位,只是一个逻辑概念,每个InputSplit并没有对文件实际的切割,只是记录了要处理的数据的位置(包括文件的path和hosts)和长度(由start和length决定)。
因此以行记录形式的文本,可能存在一行记录被划分到不同的Block,甚至不同的DataNode上去。通过分析FileInputFormat里面的getSplits方法,可以得出,某一行记录同样也可能被划分到不同的InputSplit。
从org.apache.hadoop.mapreduce.lib.input.FileInputFormat源码分析
/** * Generate the list of files and make them into FileSplits. * @param job the job context * @throws IOException */ public ListgetSplits(JobContext job) throws IOException { long minSize = Math.max(getFormatMinSplitSize(), getMinSplitSize(job)); long maxSize = getMaxSplitSize(job); // generate splits List splits = new ArrayList (); List files = listStatus(job); for (FileStatus file: files) { Path path = file.getPath(); long length = file.getLen(); if (length != 0) { BlockLocation[] blkLocations; if (file instanceof LocatedFileStatus) { blkLocations = ((LocatedFileStatus) file).getBlockLocations(); } else { FileSystem fs = path.getFileSystem(job.getConfiguration()); blkLocations = fs.getFileBlockLocations(file, 0, length); } if (isSplitable(job, path)) { long blockSize = file.getBlockSize(); long splitSize = computeSplitSize(blockSize, minSize, maxSize); long bytesRemaining = length; while (((double) bytesRemaining)/splitSize > SPLIT_SLOP) { int blkIndex = getBlockIndex(blkLocations, length-bytesRemaining); splits.add(makeSplit(path, length-bytesRemaining, splitSize, blkLocations[blkIndex].getHosts())); bytesRemaining -= splitSize; } if (bytesRemaining != 0) { int blkIndex = getBlockIndex(blkLocations, length-bytesRemaining); splits.add(makeSplit(path, length-bytesRemaining, bytesRemaining, blkLocations[blkIndex].getHosts())); } } else { // not splitable splits.add(makeSplit(path, 0, length, blkLocations[0].getHosts())); } } else { //Create empty hosts array for zero length files splits.add(makeSplit(path, 0, length, new String[0])); } } // Save the number of input files for metrics/loadgen job.getConfiguration().setLong(NUM_INPUT_FILES, files.size()); LOG.debug("Total # of splits: " + splits.size()); return splits; }
从上面的代码可以看出,对文件进行切分其实很简单:获取文件在HDFS上的路径和Block信息,然后根据splitSize对文件进行切分,splitSize = computeSplitSize(blockSize, minSize, maxSize);maxSize,minSize,blockSize都可以配置,默认splitSize 就等于blockSize的默认值(128m)。
FileInputFormat对文件的切分是严格按照偏移量来的,因此一行记录比较长的话,可能被切分到不同的InputSplit。 但这并不会对Map造成影响,尽管一行记录可能被拆分到不同的InputSplit,但是与FileInputFormat关联的RecordReader被设计的足够健壮,当一行记录跨InputSplit时,其能够到读取不同的InputSplit,直到把这一行记录读取完成 。我们拿最常见的TextInputFormat源码分析如何处理跨行InputSplit的,TextInputFormat关联的是LineRecordReader,下面我们先看LineRecordReader的的nextKeyValue方法里读取文件的代码:
public boolean nextKeyValue() throws IOException {
if (key == null) {
key = new LongWritable();
}
key.set(pos);
if (value == null) {
value = new Text();
}
int newSize = 0;
// We always read one extra line, which lies outside the upper
// split limit i.e. (end - 1)
while (getFilePosition() <= end) {
newSize = in.readLine(value, maxLineLength,
Math.max(maxBytesToConsume(pos), maxLineLength));
pos += newSize;
if (newSize < maxLineLength) {
break;
}
// line too long. try again
LOG.info("Skipped line of size " + newSize + " at pos " +
(pos - newSize));
}
if (newSize == 0) {
key = null;
value = null;
return false;
} else {
return true;
}
}
(1)其读取文件是通过LineReader(in就是一个LineReader实例)的readLine方法完成的。关键的逻辑就在这个readLine方法里,这个方法主要的逻辑归纳起来是3点:
总是从buffer里读取数据,如果buffer里的数据读完了,先加载下一批数据到buffer 在buffer中查找”行尾”,将开始位置至行尾处的数据拷贝给str(也就是最后的Value).如果为遇到”行尾”,继续加载新的数据到buffer进行查找 关键点在于:给到buffer的数据是直接从文件中读取的,完全不会考虑是否超过了split的界限,而是一直读取到当前行结束为止
/**
* Read a line terminated by one of CR, LF, or CRLF.
*/
private int readDefaultLine(Text str, int maxLineLength, int maxBytesToConsume)
throws IOException {
/* We're reading data from in, but the head of the stream may be
* already buffered in buffer, so we have several cases:
* 1. No newline characters are in the buffer, so we need to copy
* everything and read another buffer from the stream.
* 2. An unambiguously terminated line is in buffer, so we just
* copy to str.
* 3. Ambiguously terminated line is in buffer, i.e. buffer ends
* in CR. In this case we copy everything up to CR to str, but
* we also need to see what follows CR: if it's LF, then we
* need consume LF as well, so next call to readLine will read
* from after that.
* We use a flag prevCharCR to signal if previous character was CR
* and, if it happens to be at the end of the buffer, delay
* consuming it until we have a chance to look at the char that
* follows.
*/
str.clear();
int txtLength = 0; //tracks str.getLength(), as an optimization
int newlineLength = 0; //length of terminating newline
boolean prevCharCR = false; //true of prev char was CR
long bytesConsumed = 0;
do {
int startPosn = bufferPosn; //starting from where we left off the last time
//如果buffer中的数据读完了,先加载一批数据到buffer里
if (bufferPosn >= bufferLength) {
startPosn = bufferPosn = 0;
if (prevCharCR) {
++bytesConsumed; //account for CR from previous read
}
bufferLength = in.read(buffer);
if (bufferLength <= 0) {
break; // EOF
}
}
//注意:由于不同操作系统对“行结束符“的定义不同:
//UNIX: '\n' (LF)
//Mac: '\r' (CR)
//Windows: '\r\n' (CR)(LF)
//为了准确判断一行的结尾,程序的判定逻辑是:
//1.如果当前符号是LF,可以确定一定是到了行尾,但是需要参考一下前一个
//字符,因为如果前一个字符是CR,那就是windows文件,“行结束符的长度”
//(即变量:newlineLength)应该是2,否则就是UNIX文件,“行结束符的长度”为1。
//2.如果当前符号不是LF,看一下前一个符号是不是CR,如果是也可以确定一定上个字符就是行尾了,这是一个mac文件。
//3.如果当前符号是CR的话,还需要根据下一个字符是不是LF判断“行结束符的长度”,所以只是标记一下prevCharCR=true,供读取下个字符时参考
for (; bufferPosn < bufferLength; ++bufferPosn) { //search for newline
if (buffer[bufferPosn] == LF) {//存在'\n'换行字符
newlineLength = (prevCharCR) ? 2 : 1;
++bufferPosn; // at next invocation proceed from following byte
break;
}
if (prevCharCR) { //CR + notLF, we are at notLF
newlineLength = 1;
break;
}
prevCharCR = (buffer[bufferPosn] == CR);//存在'\r'回车字符
}
int readLength = bufferPosn - startPosn;
if (prevCharCR && newlineLength == 0) {
--readLength; //CR at the end of the buffer
}
bytesConsumed += readLength;
int appendLength = readLength - newlineLength;
if (appendLength > maxLineLength - txtLength) {
appendLength = maxLineLength - txtLength;
}
if (appendLength > 0) {
str.append(buffer, startPosn, appendLength);
txtLength += appendLength;
}
//newlineLength == 0 就意味着始终没有读到行尾,程序会继续通过文件输入流继续从文件里读取数据。
//这里有一个非常重要的地方:in的实例创建自构造函数:org.apache.hadoop.mapreduce.LineRecordReader.lib.input.LineRecordReader.initialize(InputSplit, TaskAttemptContext)
//方法内:FSDataInputStream fileIn = fs.open(split.getPath()); 我们以看到:
//对于LineRecordReader:当它对取“一行”时,一定是读取到完整的行,不会受filesplit的任何影响,因为它读取是filesplit所在的文件,而不是限定在filesplit的界限范围内。
//所以不会出现“断行”的问题!
} while (newlineLength == 0 && bytesConsumed < maxBytesToConsume);
if (bytesConsumed > (long)Integer.MAX_VALUE) {
throw new IOException("Too many bytes before newline: " + bytesConsumed);
}
return (int)bytesConsumed;
}
(2)按照readLine的上述行为,在遇到跨split的行时,会将下一个split开始行数据读取出来构成一行完整的数据,那么下一个split怎么判定开头的一行有没有被上一个split的LineRecordReader读取过从而避免漏读或重复读取开头一行呢?这方面LineRecordReader使用了一个简单而巧妙的方法:既然无法断定每一个split开始的一行是独立的一行还是被切断的一行的一部分,那就跳过每个split的开始一行(当然要除第一个split之外),从第二行开始读取,然后在到达split的结尾端时总是再多读一行,这样数据既能接续起来又避开了断行带来的麻烦.以下是相关的源码:
// If this is not the first split, we always throw away first record
// because we always (except the last split) read one extra line in
// next() method.
if (start != 0) {//非第一个InputSplit忽略掉第一行
start += in.readLine(new Text(), 0, maxBytesToConsume(start));
}
this.pos = start;
(3)相应地,在LineRecordReader判断是否还有下一行的方法:org.apache.hadoop.mapreduce.lib.input.LineRecordReader.nextKeyValue()中,while使用的判定条件保证了InputSplit读取跨界的问题:当前位置小于或等于split的结尾位置,也就说:当前已处于split的结尾位置上时,while依然会执行一次,这一次读到显然已经是下一个split的开始行了。
public boolean nextKeyValue() throws IOException {
if (key == null) {
key = new LongWritable();
}
key.set(pos);
if (value == null) {
value = new Text();
}
int newSize = 0;
// We always read one extra line, which lies outside the upper
// split limit i.e. (end - 1)
while (getFilePosition() <= end) {//保证InputSplit读取边界的问题
newSize = in.readLine(value, maxLineLength,
Math.max(maxBytesToConsume(pos), maxLineLength));
pos += newSize;
if (newSize < maxLineLength) {
break;
}
// line too long. try again
LOG.info("Skipped line of size " + newSize + " at pos " +
(pos - newSize));
}
if (newSize == 0) {
key = null;
value = null;
return false;
} else {
return true;
}
}
至此,通过上面的源码分析我们清楚了解到TextInputFormat是如何解决跨行Block和InputSplit的,因此当我们需要实现自己的InputFormat时,也会面临在切分数据时的连续性解析问题。