欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  科技

Spark多路径输出和二次排序实例讲解

程序员文章站 2022-04-01 20:47:59
在实际应用场景中,我们对于Spark往往有各式各样的需求,比如说想MR中的二次排序,Top N,多路劲输出等。那么这篇文章我们就来看下这几个问题。 二次排序 假设我们的数据是这样的:...

在实际应用场景中,我们对于Spark往往有各式各样的需求,比如说想MR中的二次排序,Top N,多路劲输出等。那么这篇文章我们就来看下这几个问题。

二次排序

假设我们的数据是这样的:

1   2
1   3
1   1
1   6
1   4
2   5
2   8
2   3

我们想要实现第一列按降序排列,当第一列相同时,第二列按降序排列

定义一个SecondSortKey类:

class SecondSortKey(val first: Int, val second: Int)
  extends Ordered[SecondSortKey] with Serializable {
  override def compare(that: SecondSortKey): Int = {
    if (this.first - that.first == 0) {
      this.second - that.second
    } else {
      this.first - that.first
    }
  }
}

然后这样去使用

val lines = sc.textFile("test.txt")
val pairs = lines.map { x =>
      (new SecondSortKey(x.split("\\s+")(0).toInt,
        x.split("\\s+")(1).toInt), x)
    }
val sortedPairs = pairs.sortByKey(false);
sortedPairs.map(_._2).foreach(println)

当然这里如果想按第一列升序,当第一列相同时,第二列升序的顺序排列,只需要对SecondSoryKey做如下修改即可

class SecondSortKey(val first: Int, val second: Int)
  extends Ordered[SecondSortKey] with Serializable {
  override def compare(that: SecondSortKey): Int = {
    if (this.first - that.first !== 0) {
      this.second - that.second
    } else {
      this.first - that.first
    }
  }
}

当时使用的使用去掉

pairs.sortByKey(false)

中的false

Top N

同样还是上边的数据,假设我们要得到第一列中的前五位

val lines = sc.textFile("test.txt")
val rdd = lines
        .map(x => x.split("\\s+"))
        .map(x => (x(0),x(1)))
        .sortByKey()
rdd.take(N).foreach(println)

多路径输出

自己在使用的过程中,通过搜索发现了两种方法

1:调用saveAsHadoopFile函数并自定义一个OutputFormat类

自定义RDDMultipleTextOutputFormat类

RDDMultipleTextOutputFormat类中的generateFileNameForKeyValue函数有三个参数,key和value就是我们RDD的Key和Value,而name参数是每个Reduce的编号。本例中没有使用该参数,而是直接将同一个Key的数据输出到同一个文件中。

import org.apache.hadoop.mapred.lib.MultipleTextOutputFormat  

class RDDMultipleTextOutputFormat extends MultipleTextOutputFormat[Any, Any] {  
  override def generateFileNameForKeyValue(key: Any, value: Any, name: String): String =  
    key.asInstanceOf[String]  
}  

调用

sc.parallelize(List(("w", "www"), ("b", "blog"), ("c", "com"), ("w", "bt")))  
      .map(value => (value._1, value._2 + "Test"))  
      .partitionBy(new HashPartitioner(3))  
      .saveAsHadoopFile("/iteblog", classOf[String],classOf[String],classOf[RDDMultipleTextOutputFormat])  

这里的

new HashPartitioner(3)

中的3是有key的种类决定的,当然在实际应用场景中,我们可能并不知道有多少k,这个时候就可以通过一个rdd 的 distinct操作来得到唯一key的数目。

2:使用dataframe

people_rdd = sc.parallelize([(1, "alice"), (1, "bob"), (2,"charlie")])
people_df = people_rdd.toDF(["number", "name"])
people_df.write.partitionBy("number").format("text").save(path  )

当然这两种方法都有一个缺陷,就是当数据量特别大的时候,数据在repartition的过程中特别耗费资源,也会容易出现任务failed的情况,小编采用的解决办法是,适当的对原rdd进行split,然后遍历每个rdd,进行multioutput操作

形似如下:

val rdd = sc.textFile(input)
var split_rdd = rdd.randomSplit(Array(1.0,1.0,1.0,1.0))
for (one <- Array(1,2,3,4))
{
    split_rdd(one)XXXX
}