欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

编辑距离(levenshtein distance)C/C++实现

程序员文章站 2022-04-01 17:43:37
...

编辑距离(levenshtein distance)C/C++ 实现

Levenshtein distance 距离简介

Levenshtein distance 的由来

Levenshtein Distance,又称编辑距离,指的是两个字符串之间,由一个转换成另一个所需的最少编辑操作次数。许可的编辑操作包括将一个字符替换成另一个字符,插入一个字符,删除一个字符。levenshtein() 函数返回两个字符串之间的 Levenshtein 距离。编辑距离的算法是首先由俄国科学家Levenshtein提出的,故又叫Levenshtein Distance。

编辑距离的内涵

编辑距离从三个方面进行度量:

  • 替换
  • 插入
  • 删除

如下表所示:

操作 距离 解析
替换 cat \rightarrow rat “c”被"r"替换了
插入 cat \rightarrow coat “c”和"a"之间插入了"o"
删除 cat \rightarrow at “a”左边的"c"被删除了

编辑距离示例

Saturday 与 Sunday 的编辑距离:

  1. Sunday (原本)
  2. Saunday ( “S” 和 “u” 之间增加 “a” )
  3. Satunday ( “a” 和 “u” 之间增加 “t” )
  4. Saturday ( “n” 改为 “r” )

故 Saturday 与 Sunday 的编辑距离为 3 。

编辑距离 C 语言实现

代码参考*:https://en.wikipedia.org/wiki/Levenshtein_distance

最小时间复杂度

#include <stdio.h>
#include <string.h>

#define MIN3(a,b,c) ((a)<(b)?((a)<(c)?(a):(c)):((b)<(c)?(b):(c)))

int cmp_levenshtein( const char *s1, const char *s2 );

int main( void )
{
    char str1[] = "Today is Saturday.";
    char str2[] = "Tomorrow is Sunday.";
    int d = cmp_levenshtein( str1, str2 );
    printf( "edit distance: %d\n", d );
    return 0;
}

int cmp_levenshtein( const char *s1, const char *s2 )
{
    int row = strlen(s1);               /* s1 的长度 */
    int col = strlen(s2);               /* s2 的长度 */

    int mat[row][col];                  /* C99 - variable-length array */

    for( int i=0; i<row; ++i ) {        /* 数组的行 */
        for( int j=0; j<col; ++j ) {    /* 数组的列 */
            if( i == 0 ) {
                mat[i][j] = j;          /* 初始化第1行为 [ 0 1 2 ... ] */
            }
            else if( j == 0 ) {
                mat[i][j] = i;          /* 初始化第1列为 [ 0 1 2 ... ] */
            }
            else {
                int cost = ( s1[i-1] == s2[j-1] ) ? 0 : 1;     /* 记录s1[i-1]与s2[j-1]是否相等 */
                mat[i][j] = MIN3( mat[i-1][j  ] + 1,           /* 取三者的最小值 */
                                  mat[i  ][j-1] + 1,
                                  mat[i-1][j-1] + cost);
            }
        }
    }

    return mat[row-1][col-1];
}

最小空间复杂度

#include <stdlib.h>
#include <string.h>

#define MIN3(a,b,c)   ((a)<(b)?((a)<(c)?(a):(c)):((b)<(c)?(b):(c)))
#define SWAP(a,b)     do {   \
        typeof(a) tmp = (a); \
        (a) = (b);           \
        (b) = tmp;           \
    }while(0)

int cmp_levenshtein( const char *s1, const char *s2 )
{
    // create two work vectors of integer distances
    int m = strlen(s1);
    int n = strlen(s2);
    int *v1 = (int*)malloc( (n+1)*sizeof(int) );
    if( v1==NULL ) {
        return -1;
    }
    int *v2 = (int*)malloc( (n+1)*sizeof(int) );
    if( v2==NULL ) {
        free( v1 );
        return -1;
    }
    
    // initialize v1 (the previous row of distances)
    // this row is A[0][i]: edit distance for an empty s1
    // the distance is just the number of characters to delete from s2
    for( int i=0; i<=n; ++i ) {
        v1[i] = i;
    }
    
    // calculate v2 (current row distances) from the previous row v1
    for( int i=0; i<m; ++i ) {
        // first element of v2 is A[i+1][0]
        //   edit distance is delete (i+1) chars from s to match empty s2
        v2[0] = i+1;
        
        // use formula to fill in the rest of the row
        for( int j=0; j<n; ++j ) {
            // calculating costs for A[i+1][j+1]
            int deletionCost = v1[j+1] + 1;
            int insertionCost = v2[j] + 1;
            int substitutionCost = v1[j];
            if( s1[i] != s2[j] ) {
                ++ substitutionCost;
            }
            v2[j+1] = MIN3( deletionCost, insertionCost, substitutionCost );
        }
        // copy v2 (current row) to v1 (previous row) for next iteration
        SWAP( v1, v2 );
    }
    // after the last swap, the results of v2 are now in v1
    int retval = v1[n];
    free(v1);
    free(v2);
    return retval;
}

编辑距离 C++ 语言实现

#include <string>
#include <iostream>

class levenshtein
{
public:
    static int compare( const std::string& s1, const std::string& s2 )
    {
        // create two work vectors of integer distances
        const int m = s1.size();
        const int n = s2.size();
        int* v1 = new int[n+1];
        int* v2 = new int[n+1];
        
        // initialize v1 (the previous row of distances)
        // this row is A[0][i]: edit distance for an empty s1
        // the distance is just the number of characters to delete from s2
        for( int i = 0; i <= n; ++i ) {
            v1[i] = i;
        }
        
        // calculate v2 (current row distances) from the previous row v1
        for( int i = 0; i < m; ++i ) {
            // first element of v2 is A[i+1][0]
            // edit distance is delete (i+1) chars from s to match empty s2
            v2[0] = i+1;
        
            // use formula to fill in the rest of the row
            for( int j = 0; j < n; ++j ) {
                // calculating costs for A[i+1][j+1]
                int deletionCost = v1[j+1] + 1;
                int insertionCost = v2[j] + 1;
                int substitutionCost = v1[j];
                if( s1[i] != s2[j] ) {
                    ++ substitutionCost;
                }
                v2[j+1] = min3( deletionCost, insertionCost, substitutionCost );
            }
            // copy v2 (current row) to v1 (previous row) for next iteration
            swap( v1, v2 );
        }
        
        // after the last swap, the results of v2 are now in v1
        int retval = v1[n];
        delete []v1;
        delete []v2;
        return retval;
    }
private:
    static int min3( int a, int b, int c )
    {
        if ( a < b ) {
            return a < c ? a : c ;
        }
        else {
            return b < c ? b : c ;
        }
    }
    static void swap( int*& a, int*& b )
    {
        int* tmp = a;
        a = b;
        b = tmp;
    }
};

int main( void )
{
    const std::string s1 = "Today is Saturday.";
    const std::string s2 = "Tomorrow is Sunday.";
    
    int d = levenshtein::compare( s1, s2 );
    std::cout << "edit distance: " << d << std::endl;

    return 0;
}

或者:

#include <iostream>
#include <vector>
#include <string>
#include <cmath>
using namespace std;
 
#define  min(a,b) ((a<b)?a:b)
 
//算法
int ldistance(const string source, const string target)
{
	//step 1
 
	int n = source.length();
	int m = target.length();
	if (m == 0) return n;
	if (n == 0) return m;
	//Construct a matrix
	typedef vector< vector<int> >  Tmatrix;
	Tmatrix matrix(n + 1);
	for (int i = 0; i <= n; i++)  matrix[i].resize(m + 1);
 
	//step 2 Initialize
 
	for (int i = 1; i <= n; i++) matrix[i][0] = i;
	for (int i = 1; i <= m; i++) matrix[0][i] = i;
 
	//step 3
	for (int i = 1; i <= n; i++)
	{
		const char si = source[i - 1];
		//step 4
		for (int j = 1; j <= m; j++)
		{
 
			const char dj = target[j - 1];
			//step 5
			int cost;
			if (si == dj){
				cost = 0;
			}
			else{
				cost = 1;
			}
			//step 6
			const int above = matrix[i - 1][j] + 1;
			const int left = matrix[i][j - 1] + 1;
			const int diag = matrix[i - 1][j - 1] + cost;
			matrix[i][j] = min(above, min(left, diag));
 
		}
	}//step7
	return matrix[n][m];
}
void main(){
	string s;
	s = "ABC";
	string d;
	d = "abcd";
	//cout << "source=";
	//cin >> s;
	//cout << "diag=";
	//cin >> d;
	int dist = ldistance(s, d);
	cout << "dist=" << dist << endl;
	system("pause");
}
相关标签: C++