基于Dijkstra算法,实现求城市之间最短距离
程序员文章站
2022-04-01 17:28:18
...
源代码存放在git,其中还有其他算法实现:https://github.com/zhangpei
git地址bisha/dataStructure.git
https://github.com/zhangpeibisha/dataStructure.git
https://github.com/zhangpeibisha/dataStructure.git
https://github.com/zhangpeibisha/dataStructure.git
https://github.com/zhangpeibisha/dataStructure.git
dijkstra算法简单思想:
1.使用两个集合,一个存已经遍历了的节点,一个存还未遍历的节点。集合格式{U(10)}代表起点到U节点距离为10
2.基于广度遍历
3.求解两步走:
第一步,找到还未访问节点,且其中最短路径的节点,并将这个最短路径存入已经遍历的节点。
第二部,通过找到的最短路径节点,去修正其他为访问节点到起点的最短路径。
上代码:
city类:
import java.util.ArrayList;
import java.util.List;
/**
* Create by [email protected] on 2018/4/22.
*/
public class City {
// 城市名字
private String cityName;
// 与该城市邻接的城市
private List<Distance> distance;
public City() {
init();
}
/**
* 初始化这个对象,因为当前城市到当前城市的距离默认为0
*/
public void init() {
distance = new ArrayList<>();
distance.add(new Distance(this, this, 0.0));
}
public String getCityName() {
return cityName;
}
public void setCityName(String cityName) {
this.cityName = cityName;
}
public List<Distance> getDistance() {
return distance;
}
public void setDistance(List<Distance> distance) {
this.distance = distance;
}
public City addDistance(City toCity) {
this.distance.add(new Distance(this, toCity));
return this;
}
public City addDistance(City toCity, double distance) {
this.distance.add(new Distance(this, toCity, distance));
return this;
}
}
Distance类:
/**
* Create by [email protected] on 2018/4/22.
*
* 此为原始路径距离
*/
public class Distance {
// 起点城市
private City fromCity;
// 目的城市
private City toCity;
// 两个城市之间的距离 为空则为无穷大
private double distance = Integer.MAX_VALUE-1;
public Distance(City fromCity, City toCity) {
this.fromCity = fromCity;
this.toCity = toCity;
}
public Distance(City fromCity, City toCity, double distance) {
this.fromCity = fromCity;
this.toCity = toCity;
this.distance = distance;
}
public City getFromCity() {
return fromCity;
}
public void setFromCity(City fromCity) {
this.fromCity = fromCity;
}
public City getToCity() {
return toCity;
}
public void setToCity(City toCity) {
this.toCity = toCity;
}
public Double getDistance() {
return distance;
}
public void setDistance(Double distance) {
this.distance = distance;
}
}
ShortPath类:
/**
* Create by [email protected] on 2018/4/22.
*
* 城市与城市之间的最短路径
*/
public class ShortPath {
// 出发城市
private City fromCity;
// 目的城市
private City toCity;
// 途径地
private Queue<City> ways;
// 两个城市之间的需要走的距离
private Double distance;
public ShortPath(City fromCity, City toCity) {
this.fromCity = fromCity;
this.toCity = toCity;
}
public City getFromCity() {
return fromCity;
}
public void setFromCity(City fromCity) {
this.fromCity = fromCity;
}
public City getToCity() {
return toCity;
}
public void setToCity(City toCity) {
this.toCity = toCity;
}
public Queue<City> getWays() {
return ways;
}
public void setWays(Queue<City> ways) {
this.ways = ways;
}
public Double getDistance() {
return distance;
}
public void setDistance(Double distance) {
this.distance = distance;
}
}
Dijkstra类:
import java.util.LinkedList;
import java.util.List;
import java.util.Queue;
/**
* Create by [email protected] on 2018/4/22.
* <p>
* 具体算法
*/
public class CityDijKstra {
// 起点城市
private final City startCity;
private final City endCity;
// 使用邻接矩阵表示地图
private List<City> map;
// 求出来的最短路径结果保存,若为空则没有路径可达
private ShortPath shortPath;
public CityDijKstra(City startCity, City endCity, List<City> map) {
this.startCity = startCity;
this.endCity = endCity;
this.map = map;
init();
}
private void dijkstra(int citySize, int startIndex, int endIndex) {
// 保存起点城市到其他城市的最短长度
double[] shortPath = new double[citySize];
// 标记城市是否被求的最短路径
boolean[] marked = new boolean[citySize];
// 保存最短路径访问
Queue<City>[] paths = new LinkedList[citySize];
// 起点和其他点的距离
List<Distance> startDistance = map.get(startIndex).getDistance();
//初始化paths
for (int i = 0; i < citySize; i++) {
Queue<City> queue = new LinkedList<>();
queue.offer(startCity);
queue.offer(map.get(i));
paths[i] = queue;
}
// 自己访问自己距离为0 且不必在求最短路径,因此标记为true
shortPath[startIndex] = 0;
marked[startIndex] = true;
for (int i = 1; i < citySize; i++) {
/**
* 此部分计算起点到其他为标记点中最短路径的那个点
*/
// 记录顶点能到达点的最短距离的下标
int k = -1;
// 距离为Integer.MAX_VALUE表示不可达
double mind = Integer.MAX_VALUE;
for (int j = 0; j < citySize; j++) {
double dis = startDistance.get(j).getDistance();
if (!marked[j] && dis < mind) {
mind = dis;
k = j;
}
}
shortPath[k] = mind;
marked[k] = true;
/**
* 此部分根据k点修正起点到其他所有节点的前驱节点及距离
*/
for (int j = 0; j < citySize; j++) {
//起点到k点的最短距离 + k点到j点的最短距离
double dis = startDistance.get(k).getDistance() +
map.get(k).getDistance().get(j).getDistance();
// 判断j点是否被标记,若没有被标记,且dis小于直达距离,则修正最短距离
if (!marked[j] && dis < startDistance.get(j).getDistance()) {
map.get(startIndex)
.getDistance()
.get(j).setDistance(dis);
Queue<City> queue = new LinkedList<>();
for (City city : paths[k]) {
queue.offer(city);
}
queue.offer(map.get(j));
paths[j] = queue;
}
}
}
display(shortPath, paths);
this.shortPath.setDistance(shortPath[endIndex]);
this.shortPath.setWays(paths[endIndex]);
}
private void init() {
// 初始化最短路径结果中的起始城市和目的城市
shortPath = new ShortPath(startCity, endCity);
int citySize = map.size();
int startIndex = map.indexOf(startCity);
int endIndex = map.indexOf(endCity);
dijkstra(citySize, startIndex, endIndex);
display(map);
}
private void display(double[] dis, Queue<City>[] paths) {
for (int i = 0; i < dis.length; i++) {
System.out.print(startCity.getCityName() + "到" + map.get(i).getCityName());
System.out.print("的距离为:" + dis[i]);
System.out.println();
System.out.print(startCity.getCityName() + "到" + map.get(i).getCityName());
System.out.print("的路径为:");
for (City city : paths[i]) {
System.out.print(city.getCityName() + " ");
}
System.out.println();
}
}
private void display(List<City> cities){
System.out.println("==========================");
for (City city : cities) {
for (int i = 0; i <city.getDistance().size() ; i++) {
System.out.print(city.getCityName() + "到");
if (city.getDistance().get(i).getDistance() < Integer.MAX_VALUE/2)
System.out.print(city.getDistance().get(i).getToCity().getCityName() +
"距离为" +
city.getDistance().get(i).getDistance());
else
System.out.print(city.getDistance().get(i).getToCity().getCityName() +
"距离为不可达");
System.out.println();
}
}
}
}
测试类:ShortPahtTest:
import java.util.ArrayList;
import java.util.List;
/**
* Create by [email protected] on 2018/4/22.
* <p>
* 最短路径算法测试
*/
public class ShortPathTest {
public static void main(String[] args) {
double MAX = Integer.MAX_VALUE;
City chongqing = new City();
chongqing.setCityName("重庆0");
City guangzhou = new City();
guangzhou.setCityName("广州1");
City shenzheng = new City();
shenzheng.setCityName("深圳2");
City huizhou = new City();
huizhou.setCityName("惠州3");
City shanghai = new City();
shanghai.setCityName("上海4");
chongqing.addDistance(guangzhou,10.0)
.addDistance(shenzheng)
.addDistance(huizhou,30.0)
.addDistance(shanghai,100.0);
guangzhou.addDistance(chongqing)
.addDistance(shenzheng,50.0)
.addDistance(huizhou)
.addDistance(shanghai);
shenzheng.addDistance(guangzhou)
.addDistance(chongqing)
.addDistance(huizhou)
.addDistance(shanghai,10.0);
huizhou.addDistance(guangzhou)
.addDistance(shenzheng,20.0)
.addDistance(chongqing)
.addDistance(shanghai,60.0);
shanghai.addDistance(guangzhou)
.addDistance(shenzheng)
.addDistance(huizhou)
.addDistance(chongqing);
List<City> cities = new ArrayList<City>();
cities.add(chongqing);
cities.add(guangzhou);
cities.add(shenzheng);
cities.add(huizhou);
cities.add(shanghai);
CityDijKstra cityDijKstra = new CityDijKstra(chongqing,shenzheng,cities);
}
}