欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

基于Dijkstra算法,实现求城市之间最短距离

程序员文章站 2022-04-01 17:28:18
...

源代码存放在git,其中还有其他算法实现:https://github.com/zhangpei

git地址bisha/dataStructure.git

https://github.com/zhangpeibisha/dataStructure.git
https://github.com/zhangpeibisha/dataStructure.git
https://github.com/zhangpeibisha/dataStructure.git
https://github.com/zhangpeibisha/dataStructure.git

dijkstra算法简单思想:

1.使用两个集合,一个存已经遍历了的节点,一个存还未遍历的节点。集合格式{U(10)}代表起点到U节点距离为10

2.基于广度遍历

3.求解两步走:

第一步,找到还未访问节点,且其中最短路径的节点,并将这个最短路径存入已经遍历的节点。

第二部,通过找到的最短路径节点,去修正其他为访问节点到起点的最短路径。

上代码:

city类:

import java.util.ArrayList;
import java.util.List;

/**
 * Create by [email protected] on 2018/4/22.
 */
public class City {

    // 城市名字
    private String cityName;

    // 与该城市邻接的城市
    private List<Distance> distance;

    public City() {
        init();
    }

    /**
     * 初始化这个对象,因为当前城市到当前城市的距离默认为0
     */
    public void init() {
        distance = new ArrayList<>();
        distance.add(new Distance(this, this, 0.0));
    }

    public String getCityName() {
        return cityName;
    }

    public void setCityName(String cityName) {
        this.cityName = cityName;
    }

    public List<Distance> getDistance() {
        return distance;
    }

    public void setDistance(List<Distance> distance) {
        this.distance = distance;
    }

    public City addDistance(City toCity) {
        this.distance.add(new Distance(this, toCity));
        return this;
    }

    public City addDistance(City toCity, double distance) {
        this.distance.add(new Distance(this, toCity, distance));
        return this;
    }


}

Distance类:

/**
 * Create by [email protected] on 2018/4/22.
 *
 * 此为原始路径距离
 */
public class Distance {

    // 起点城市
    private City fromCity;

    // 目的城市
    private City toCity;

    // 两个城市之间的距离  为空则为无穷大
    private double distance = Integer.MAX_VALUE-1;

    public Distance(City fromCity, City toCity) {
        this.fromCity = fromCity;
        this.toCity = toCity;
    }

    public Distance(City fromCity, City toCity, double distance) {
        this.fromCity = fromCity;
        this.toCity = toCity;
        this.distance = distance;
    }

    public City getFromCity() {
        return fromCity;
    }

    public void setFromCity(City fromCity) {
        this.fromCity = fromCity;
    }

    public City getToCity() {
        return toCity;
    }

    public void setToCity(City toCity) {
        this.toCity = toCity;
    }

    public Double getDistance() {
        return distance;
    }

    public void setDistance(Double distance) {
        this.distance = distance;
    }
}

ShortPath类:

/**
 * Create by [email protected] on 2018/4/22.
 *
 * 城市与城市之间的最短路径
 */
public class ShortPath {

    // 出发城市
    private City fromCity;

    // 目的城市
    private City toCity;

    // 途径地
    private Queue<City> ways;

    // 两个城市之间的需要走的距离
    private Double distance;

    public ShortPath(City fromCity, City toCity) {
        this.fromCity = fromCity;
        this.toCity = toCity;
    }

    public City getFromCity() {
        return fromCity;
    }

    public void setFromCity(City fromCity) {
        this.fromCity = fromCity;
    }

    public City getToCity() {
        return toCity;
    }

    public void setToCity(City toCity) {
        this.toCity = toCity;
    }

    public Queue<City> getWays() {
        return ways;
    }

    public void setWays(Queue<City> ways) {
        this.ways = ways;
    }

    public Double getDistance() {
        return distance;
    }

    public void setDistance(Double distance) {
        this.distance = distance;
    }
}

Dijkstra类:

import java.util.LinkedList;
import java.util.List;
import java.util.Queue;

/**
 * Create by [email protected] on 2018/4/22.
 * <p>
 * 具体算法
 */
public class CityDijKstra {

    // 起点城市
    private final City startCity;

    private final City endCity;

    // 使用邻接矩阵表示地图
    private List<City> map;

    // 求出来的最短路径结果保存,若为空则没有路径可达
    private ShortPath shortPath;

    public CityDijKstra(City startCity, City endCity, List<City> map) {
        this.startCity = startCity;
        this.endCity = endCity;
        this.map = map;
        init();
    }

    private void dijkstra(int citySize, int startIndex, int endIndex) {

        // 保存起点城市到其他城市的最短长度
        double[] shortPath = new double[citySize];
        // 标记城市是否被求的最短路径
        boolean[] marked = new boolean[citySize];
        // 保存最短路径访问
        Queue<City>[] paths = new LinkedList[citySize];
        // 起点和其他点的距离
        List<Distance> startDistance = map.get(startIndex).getDistance();

        //初始化paths
        for (int i = 0; i < citySize; i++) {
            Queue<City> queue = new LinkedList<>();
            queue.offer(startCity);
            queue.offer(map.get(i));
            paths[i] = queue;
        }

        // 自己访问自己距离为0 且不必在求最短路径,因此标记为true
        shortPath[startIndex] = 0;
        marked[startIndex] = true;

        for (int i = 1; i < citySize; i++) {

            /**
             * 此部分计算起点到其他为标记点中最短路径的那个点
             */
            // 记录顶点能到达点的最短距离的下标
            int k = -1;
            // 距离为Integer.MAX_VALUE表示不可达
            double mind = Integer.MAX_VALUE;

            for (int j = 0; j < citySize; j++) {

                double dis = startDistance.get(j).getDistance();

                if (!marked[j] && dis < mind) {
                    mind = dis;
                    k = j;
                }
            }

            shortPath[k] = mind;
            marked[k] = true;

            /**
             * 此部分根据k点修正起点到其他所有节点的前驱节点及距离
             */

            for (int j = 0; j < citySize; j++) {

                //起点到k点的最短距离 + k点到j点的最短距离
                double dis = startDistance.get(k).getDistance() +
                        map.get(k).getDistance().get(j).getDistance();

                // 判断j点是否被标记,若没有被标记,且dis小于直达距离,则修正最短距离
                if (!marked[j] && dis < startDistance.get(j).getDistance()) {

                    map.get(startIndex)
                            .getDistance()
                            .get(j).setDistance(dis);

                    Queue<City> queue = new LinkedList<>();
                    for (City city : paths[k]) {
                        queue.offer(city);
                    }
                    queue.offer(map.get(j));
                    paths[j] = queue;
                }
            }
        }
        display(shortPath, paths);
        this.shortPath.setDistance(shortPath[endIndex]);
        this.shortPath.setWays(paths[endIndex]);
    }


    private void init() {
        // 初始化最短路径结果中的起始城市和目的城市
        shortPath = new ShortPath(startCity, endCity);
        int citySize = map.size();
        int startIndex = map.indexOf(startCity);
        int endIndex = map.indexOf(endCity);
        dijkstra(citySize, startIndex, endIndex);
        display(map);
    }

    private void display(double[] dis, Queue<City>[] paths) {

        for (int i = 0; i < dis.length; i++) {
            System.out.print(startCity.getCityName() + "到" + map.get(i).getCityName());
            System.out.print("的距离为:" + dis[i]);
            System.out.println();
            System.out.print(startCity.getCityName() + "到" + map.get(i).getCityName());
            System.out.print("的路径为:");
            for (City city : paths[i]) {
                System.out.print(city.getCityName() + " ");
            }
            System.out.println();
        }
    }

    private void display(List<City> cities){
        System.out.println("==========================");
        for (City city : cities) {
            for (int i = 0; i <city.getDistance().size() ; i++) {
                System.out.print(city.getCityName() + "到");
                if (city.getDistance().get(i).getDistance() < Integer.MAX_VALUE/2)
                System.out.print(city.getDistance().get(i).getToCity().getCityName() +
                        "距离为" +
                        city.getDistance().get(i).getDistance());
                else
                    System.out.print(city.getDistance().get(i).getToCity().getCityName() +
                            "距离为不可达");
                System.out.println();
            }

        }
    }
}

测试类:ShortPahtTest:

import java.util.ArrayList;
import java.util.List;

/**
 * Create by [email protected] on 2018/4/22.
 * <p>
 * 最短路径算法测试
 */
public class ShortPathTest {

    public static void main(String[] args) {

        double MAX = Integer.MAX_VALUE;

        City chongqing = new City();
        chongqing.setCityName("重庆0");

        City guangzhou = new City();
        guangzhou.setCityName("广州1");

        City shenzheng = new City();
        shenzheng.setCityName("深圳2");

        City huizhou = new City();
        huizhou.setCityName("惠州3");

        City shanghai = new City();
        shanghai.setCityName("上海4");


        chongqing.addDistance(guangzhou,10.0)
                .addDistance(shenzheng)
                .addDistance(huizhou,30.0)
                .addDistance(shanghai,100.0);

        guangzhou.addDistance(chongqing)
                .addDistance(shenzheng,50.0)
                .addDistance(huizhou)
                .addDistance(shanghai);

        shenzheng.addDistance(guangzhou)
                .addDistance(chongqing)
                .addDistance(huizhou)
                .addDistance(shanghai,10.0);

        huizhou.addDistance(guangzhou)
                .addDistance(shenzheng,20.0)
                .addDistance(chongqing)
                .addDistance(shanghai,60.0);

        shanghai.addDistance(guangzhou)
                .addDistance(shenzheng)
                .addDistance(huizhou)
                .addDistance(chongqing);

        List<City> cities = new ArrayList<City>();
        cities.add(chongqing);
        cities.add(guangzhou);
        cities.add(shenzheng);
        cities.add(huizhou);
        cities.add(shanghai);

        CityDijKstra cityDijKstra = new CityDijKstra(chongqing,shenzheng,cities);
    }

}

相关标签: dijkstra shortPath