欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

2018.10.15 bzoj4445: [Scoi2015]小凸想跑步(半平面交)

程序员文章站 2022-04-01 15:57:31
...

传送门
话说去年的省选计算几何难度跟前几年比起来根本不能做啊(虽然去年考的时候并没有学过计算几何)
这题就是推个式子然后上半平面交就做完了。
什么?
怎么推式子?
先把题目的概率转换成求出可行区域。
然后用可行区域的面积比上总面积就是答案了。
我们设0号点(x1,y1)(x1,y1),1号点(x2,y2)(x2,y2),i号点(x3,y3)(x3,y3),i+1号点(x4,y4)(x4,y4)
然后由题可知cross(p0,p1)<cross(pi,pi+1)cross(p_0,p_1)<cross(p_i,p_{i+1})
然后化简得:
(y1y2y3+y4)x+(x1+x2+x3x4)y+cross(p0,p1)cross(pi,pi+1)>0(y1-y2-y3+y4)x+(-x1+x2+x3-x4)y+cross(p_0,p_1)-cross(p_i,p_{i+1})>0
这不就是半平面交吗?
直接上半平面交就行了。
代码:

#include<bits/stdc++.h>
#define N 200005
#define inf 2000000000
using namespace std;
int n,tot,q[N],hd,tl,siz=0;
struct Pot{double x,y;}p[N];
struct line{Pot a,b;}L[N];
inline Pot operator+(const Pot&a,const Pot&b){return (Pot){a.x+b.x,a.y+b.y};}
inline Pot operator-(const Pot&a,const Pot&b){return (Pot){a.x-b.x,a.y-b.y};}
inline double operator^(const Pot&a,const Pot&b){return a.x*b.y-a.y*b.x;}
inline double operator*(const Pot&a,const Pot&b){return a.x*b.x+a.y*b.y;}
inline Pot operator*(const Pot&a,const double&b){return (Pot){a.x*b,a.y*b};}
inline bool check(const Pot&a,const line&b){return ((a-b.a)^b.b)>=0;}
inline Pot cross(const line&a,const line&b){return b.a+b.b*((a.b^(a.a-b.a))/(a.b^b.b));}
inline int read(){
	int ans=0,w=1;
	char ch=getchar();
	while(!isdigit(ch)){if(ch=='-')w=-1;ch=getchar();}
	while(isdigit(ch))ans=(ans<<3)+(ans<<1)+(ch^48),ch=getchar();
	return ans*w;
}
inline bool cmp(const line&a,const line&b){return atan2(a.b.y,a.b.x)<atan2(b.b.y,b.b.x);}            
int main(){
    double sum1=0.0,sum2=0.0;
    n=read();
    for(int i=1;i<=n;++i)p[i].x=read()*1.0,p[i].y=read()*1.0;
    for(int i=1;i<n;++i)sum2+=p[i]^p[i+1];
    sum2+=p[n]^p[1];
    L[++tot]=(line){p[2],p[1]-p[2]};
    for(int i=2;i<=n-1;++i){
        double a=p[1].y-p[2].y-p[i].y+p[i+1].y;
        double b=-p[1].x+p[2].x+p[i].x-p[i+1].x;
        double c=(p[1]^p[2])-(p[i]^p[i+1]);
        L[++tot]=(line){(Pot){b?0:-c/a,b?-c/b:0},(Pot){b,-a}};
    }
    double a=p[1].y-p[2].y-p[n].y+p[1].y;
    double b=-p[1].x+p[2].x+p[n].x-p[1].x;
    double c=p[1].x*p[2].y-p[2].x*p[1].y-p[n].x*p[1].y+p[1].x*p[n].y;
    L[++tot]=(line){(Pot){b?0:-c/a,b?-c/b:0},(Pot){b,-a}};
    L[++tot]=(line){(Pot){-inf,-inf},(Pot){0,1}};
    L[++tot]=(line){(Pot){-inf,inf},(Pot){1,0}};
    L[++tot]=(line){(Pot){inf,inf},(Pot){0,-1}};
   	L[++tot]=(line){(Pot){inf,-inf},(Pot){-1,0}};
    sort(L+1,L+tot+1,cmp),siz=1;
    for(int i=2;i<=tot;++i){
        if(atan2(L[i].b.y,L[i].b.x)-atan2(L[i-1].b.y,L[i-1].b.x)>1e-10)L[++siz]=L[i];
        else if(check(L[i].a,L[siz]))L[siz]=L[i];
    }
    q[hd=1]=1,q[tl=2]=2;
    for(int i=3;i<=siz;++i){
        while(hd<tl&&!check(cross(L[q[tl-1]],L[q[tl]]),L[i]))--tl;
        while(hd<tl&&!check(cross(L[q[hd]],L[q[hd+1]]),L[i]))++hd;
        q[++tl]=i;
    }
    while(hd<tl&&!check(cross(L[q[tl-1]],L[q[tl]]),L[q[hd]]))--tl;
    while(hd<tl&&!check(cross(L[q[hd]],L[q[hd+1]]),L[q[tl]]))++hd;
    for(int i=hd;i<tl;++i)p[i-hd+1]=cross(L[q[i]],L[q[i+1]]);
    p[tl-hd+1]=cross((L[q[tl]]),L[q[hd]]);
    for(int i=1;i<=tl-hd;++i)sum1+=p[i]^p[i+1];
    sum1+=p[tl-hd+1]^p[1];
    printf("%.4lf",sum1/sum2);
    return 0;
}
相关标签: 计算几何