蓝桥杯练习系统 基础练习:BASIC-6 杨辉三角形
程序员文章站
2022-04-01 12:09:28
...
题目信息
问题描述
杨辉三角形又称Pascal三角形,它的第i+1行是(a+b)i的展开式的系数。它的一个重要性质是:三角形中的每个数字等于它两肩上的数字相加。
下面给出了杨辉三角形的前4行:
1
1 1
1 2 1
1 3 3 1
给出n,输出它的前n行。
输入格式
输入包含一个数n。
输出格式
输出杨辉三角形的前n行。每一行从这一行的第一个数开始依次输出,中间使用一个空格分隔。请不要在前面输出多余的空格。
样例输入
4
样例输出
1
1 1
1 2 1
1 3 3 1
数据规模与约定
1 <= n <= 34。
解题思路
主要考察
本题给出的考察关键字是:基础练习、二维数组
。
解题思路
首先我们要注意该题目的数据规模:1 <= n <= 34
。所以我们先开一个Pascal[35][35]
大小的数组。然后根据杨辉三角的特征,我们首先将每一行的第一个数和该行的最后一个数填上 1 。然后我们根据杨辉三角的定义从第二行开始求每一行的数。最后输出即可。
解题代码
#include<iostream>
using namespace std;
int main(){
int Pascal[35][35] = {0};
int n;
cin>>n;
for(int i=0;i<n;i++){
Pascal[i][0] = 1;
Pascal[i][i] = 1;
}
for(int i=2;i<n;i++){
for(int j=1;j<=i;j++){
Pascal[i][j] = Pascal[i-1][j-1] + Pascal[i-1][j];
}
}
for(int i=0;i<n;i++){
for(int j=0;j<=i;j++){
cout<<Pascal[i][j]<<" ";
}
cout<<endl;
}
return 0;
}
以上就是对于本题的解题思路了。如果你觉得我的文章对你有用请点个赞支持一下吧,喜欢我写的文章那么请点个关注再走鸭。如果此文章有错误或者有不同的见解欢迎评论或者私信。
我是ACfun:一个成长中的程序猿,感谢大家的支持。