PHP+JS+rsa数据加密传输实现代码
程序员文章站
2022-03-31 18:40:28
...
JS端代码:
//文件base64.js: var b64map="ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/"; var b64pad="="; function hex2b64(h) { var i; var c; var ret = ""; for(i = 0; i+3 <= h.length; i+=3) { c = parseInt(h.substring(i,i+3),16); ret += b64map.charAt(c >> 6) + b64map.charAt(c & 63); } if(i+1 == h.length) { c = parseInt(h.substring(i,i+1),16); ret += b64map.charAt(c << 2); } else if(i+2 == h.length) { c = parseInt(h.substring(i,i+2),16); ret += b64map.charAt(c >> 2) + b64map.charAt((c & 3) << 4); } while((ret.length & 3) > 0) ret += b64pad; return ret; } // convert a base64 string to hex function b64tohex(s) { var ret = "" var i; var k = 0; // b64 state, 0-3 var slop; for(i = 0; i < s.length; ++i) { if(s.charAt(i) == b64pad) break; v = b64map.indexOf(s.charAt(i)); if(v < 0) continue; if(k == 0) { ret += int2char(v >> 2); slop = v & 3; k = 1; } else if(k == 1) { ret += int2char((slop << 2) | (v >> 4)); slop = v & 0xf; k = 2; } else if(k == 2) { ret += int2char(slop); ret += int2char(v >> 2); slop = v & 3; k = 3; } else { ret += int2char((slop << 2) | (v >> 4)); ret += int2char(v & 0xf); k = 0; } } if(k == 1) ret += int2char(slop << 2); return ret; } // convert a base64 string to a byte/number array function b64toBA(s) { //piggyback on b64tohex for now, optimize later var h = b64tohex(s); var i; var a = new Array(); for(i = 0; 2*i < h.length; ++i) { a[i] = parseInt(h.substring(2*i,2*i+2),16); } return a; } #文件jsbn.js // Copyright (c) 2005 Tom Wu // All Rights Reserved. // See "LICENSE" for details. // Basic JavaScript BN library - subset useful for RSA encryption. // Bits per digit var dbits; // JavaScript engine analysis var canary = 0xdeadbeefcafe; var j_lm = ((canary&0xffffff)==0xefcafe); // (public) Constructor function BigInteger(a,b,c) { if(a != null) if("number" == typeof a) this.fromNumber(a,b,c); else if(b == null && "string" != typeof a) this.fromString(a,256); else this.fromString(a,b); } // return new, unset BigInteger function nbi() { return new BigInteger(null); } // am: Compute w_j += (x*this_i), propagate carries, // c is initial carry, returns final carry. // c < 3*dvalue, x < 2*dvalue, this_i < dvalue // We need to select the fastest one that works in this environment. // am1: use a single mult and divide to get the high bits, // max digit bits should be 26 because // max internal value = 2*dvalue^2-2*dvalue (< 2^53) function am1(i,x,w,j,c,n) { while(--n >= 0) { var v = x*this[i++]+w[j]+c; c = Math.floor(v/0x4000000); w[j++] = v&0x3ffffff; } return c; } // am2 avoids a big mult-and-extract completely. // Max digit bits should be <= 30 because we do bitwise ops // on values up to 2*hdvalue^2-hdvalue-1 (< 2^31) function am2(i,x,w,j,c,n) { var xl = x&0x7fff, xh = x>>15; while(--n >= 0) { var l = this[i]&0x7fff; var h = this[i++]>>15; var m = xh*l+h*xl; l = xl*l+((m&0x7fff)<<15)+w[j]+(c&0x3fffffff); c = (l>>>30)+(m>>>15)+xh*h+(c>>>30); w[j++] = l&0x3fffffff; } return c; } // Alternately, set max digit bits to 28 since some // browsers slow down when dealing with 32-bit numbers. function am3(i,x,w,j,c,n) { var xl = x&0x3fff, xh = x>>14; while(--n >= 0) { var l = this[i]&0x3fff; var h = this[i++]>>14; var m = xh*l+h*xl; l = xl*l+((m&0x3fff)<<14)+w[j]+c; c = (l>>28)+(m>>14)+xh*h; w[j++] = l&0xfffffff; } return c; } if(j_lm && (navigator.appName == "Microsoft Internet Explorer")) { BigInteger.prototype.am = am2; dbits = 30; } else if(j_lm && (navigator.appName != "Netscape")) { BigInteger.prototype.am = am1; dbits = 26; } else { // Mozilla/Netscape seems to prefer am3 BigInteger.prototype.am = am3; dbits = 28; } BigInteger.prototype.DB = dbits; BigInteger.prototype.DM = ((1<<dbits)-1); BigInteger.prototype.DV = (1<<dbits); var BI_FP = 52; BigInteger.prototype.FV = Math.pow(2,BI_FP); BigInteger.prototype.F1 = BI_FP-dbits; BigInteger.prototype.F2 = 2*dbits-BI_FP; // Digit conversions var BI_RM = "0123456789abcdefghijklmnopqrstuvwxyz"; var BI_RC = new Array(); var rr,vv; rr = "0".charCodeAt(0); for(vv = 0; vv <= 9; ++vv) BI_RC[rr++] = vv; rr = "a".charCodeAt(0); for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv; rr = "A".charCodeAt(0); for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv; function int2char(n) { return BI_RM.charAt(n); } function intAt(s,i) { var c = BI_RC[s.charCodeAt(i)]; return (c==null)?-1:c; } // (protected) copy this to r function bnpCopyTo(r) { for(var i = this.t-1; i >= 0; --i) r[i] = this[i]; r.t = this.t; r.s = this.s; } // (protected) set from integer value x, -DV <= x < DV function bnpFromInt(x) { this.t = 1; this.s = (x<0)?-1:0; if(x > 0) this[0] = x; else if(x < -1) this[0] = x+DV; else this.t = 0; } // return bigint initialized to value function nbv(i) { var r = nbi(); r.fromInt(i); return r; } // (protected) set from string and radix function bnpFromString(s,b) { var k; if(b == 16) k = 4; else if(b == 8) k = 3; else if(b == 256) k = 8; // byte array else if(b == 2) k = 1; else if(b == 32) k = 5; else if(b == 4) k = 2; else { this.fromRadix(s,b); return; } this.t = 0; this.s = 0; var i = s.length, mi = false, sh = 0; while(--i >= 0) { var x = (k==8)?s[i]&0xff:intAt(s,i); if(x < 0) { if(s.charAt(i) == "-") mi = true; continue; } mi = false; if(sh == 0) this[this.t++] = x; else if(sh+k > this.DB) { this[this.t-1] |= (x&((1<<(this.DB-sh))-1))<<sh; this[this.t++] = (x>>(this.DB-sh)); } else this[this.t-1] |= x<<sh; sh += k; if(sh >= this.DB) sh -= this.DB; } if(k == 8 && (s[0]&0x80) != 0) { this.s = -1; if(sh > 0) this[this.t-1] |= ((1<<(this.DB-sh))-1)<<sh; } this.clamp(); if(mi) BigInteger.ZERO.subTo(this,this); } // (protected) clamp off excess high words function bnpClamp() { var c = this.s&this.DM; while(this.t > 0 && this[this.t-1] == c) --this.t; } // (public) return string representation in given radix function bnToString(b) { if(this.s < 0) return "-"+this.negate().toString(b); var k; if(b == 16) k = 4; else if(b == 8) k = 3; else if(b == 2) k = 1; else if(b == 32) k = 5; else if(b == 4) k = 2; else return this.toRadix(b); var km = (1<<k)-1, d, m = false, r = "", i = this.t; var p = this.DB-(i*this.DB)%k; if(i-- > 0) { if(p < this.DB && (d = this[i]>>p) > 0) { m = true; r = int2char(d); } while(i >= 0) { if(p < k) { d = (this[i]&((1<<p)-1))<<(k-p); d |= this[--i]>>(p+=this.DB-k); } else { d = (this[i]>>(p-=k))&km; if(p <= 0) { p += this.DB; --i; } } if(d > 0) m = true; if(m) r += int2char(d); } } return m?r:"0"; } // (public) -this function bnNegate() { var r = nbi(); BigInteger.ZERO.subTo(this,r); return r; } // (public) |this| function bnAbs() { return (this.s<0)?this.negate():this; } // (public) return + if this > a, - if this < a, 0 if equal function bnCompareTo(a) { var r = this.s-a.s; if(r != 0) return r; var i = this.t; r = i-a.t; if(r != 0) return r; while(--i >= 0) if((r=this[i]-a[i]) != 0) return r; return 0; } // returns bit length of the integer x function nbits(x) { var r = 1, t; if((t=x>>>16) != 0) { x = t; r += 16; } if((t=x>>8) != 0) { x = t; r += 8; } if((t=x>>4) != 0) { x = t; r += 4; } if((t=x>>2) != 0) { x = t; r += 2; } if((t=x>>1) != 0) { x = t; r += 1; } return r; } // (public) return the number of bits in "this" function bnBitLength() { if(this.t <= 0) return 0; return this.DB*(this.t-1)+nbits(this[this.t-1]^(this.s&this.DM)); } // (protected) r = this << n*DB function bnpDLShiftTo(n,r) { var i; for(i = this.t-1; i >= 0; --i) r[i+n] = this[i]; for(i = n-1; i >= 0; --i) r[i] = 0; r.t = this.t+n; r.s = this.s; } // (protected) r = this >> n*DB function bnpDRShiftTo(n,r) { for(var i = n; i < this.t; ++i) r[i-n] = this[i]; r.t = Math.max(this.t-n,0); r.s = this.s; } // (protected) r = this << n function bnpLShiftTo(n,r) { var bs = n%this.DB; var cbs = this.DB-bs; var bm = (1<<cbs)-1; var ds = Math.floor(n/this.DB), c = (this.s<<bs)&this.DM, i; for(i = this.t-1; i >= 0; --i) { r[i+ds+1] = (this[i]>>cbs)|c; c = (this[i]&bm)<<bs; } for(i = ds-1; i >= 0; --i) r[i] = 0; r[ds] = c; r.t = this.t+ds+1; r.s = this.s; r.clamp(); } // (protected) r = this >> n function bnpRShiftTo(n,r) { r.s = this.s; var ds = Math.floor(n/this.DB); if(ds >= this.t) { r.t = 0; return; } var bs = n%this.DB; var cbs = this.DB-bs; var bm = (1<<bs)-1; r[0] = this[ds]>>bs; for(var i = ds+1; i < this.t; ++i) { r[i-ds-1] |= (this[i]&bm)<<cbs; r[i-ds] = this[i]>>bs; } if(bs > 0) r[this.t-ds-1] |= (this.s&bm)<<cbs; r.t = this.t-ds; r.clamp(); } // (protected) r = this - a function bnpSubTo(a,r) { var i = 0, c = 0, m = Math.min(a.t,this.t); while(i < m) { c += this[i]-a[i]; r[i++] = c&this.DM; c >>= this.DB; } if(a.t < this.t) { c -= a.s; while(i < this.t) { c += this[i]; r[i++] = c&this.DM; c >>= this.DB; } c += this.s; } else { c += this.s; while(i < a.t) { c -= a[i]; r[i++] = c&this.DM; c >>= this.DB; } c -= a.s; } r.s = (c<0)?-1:0; if(c < -1) r[i++] = this.DV+c; else if(c > 0) r[i++] = c; r.t = i; r.clamp(); } // (protected) r = this * a, r != this,a (HAC 14.12) // "this" should be the larger one if appropriate. function bnpMultiplyTo(a,r) { var x = this.abs(), y = a.abs(); var i = x.t; r.t = i+y.t; while(--i >= 0) r[i] = 0; for(i = 0; i < y.t; ++i) r[i+x.t] = x.am(0,y[i],r,i,0,x.t); r.s = 0; r.clamp(); if(this.s != a.s) BigInteger.ZERO.subTo(r,r); } // (protected) r = this^2, r != this (HAC 14.16) function bnpSquareTo(r) { var x = this.abs(); var i = r.t = 2*x.t; while(--i >= 0) r[i] = 0; for(i = 0; i < x.t-1; ++i) { var c = x.am(i,x[i],r,2*i,0,1); if((r[i+x.t]+=x.am(i+1,2*x[i],r,2*i+1,c,x.t-i-1)) >= x.DV) { r[i+x.t] -= x.DV; r[i+x.t+1] = 1; } } if(r.t > 0) r[r.t-1] += x.am(i,x[i],r,2*i,0,1); r.s = 0; r.clamp(); } // (protected) divide this by m, quotient and remainder to q, r (HAC 14.20) // r != q, this != m. q or r may be null. function bnpDivRemTo(m,q,r) { var pm = m.abs(); if(pm.t <= 0) return; var pt = this.abs(); if(pt.t < pm.t) { if(q != null) q.fromInt(0); if(r != null) this.copyTo(r); return; } if(r == null) r = nbi(); var y = nbi(), ts = this.s, ms = m.s; var nsh = this.DB-nbits(pm[pm.t-1]); // normalize modulus if(nsh > 0) { pm.lShiftTo(nsh,y); pt.lShiftTo(nsh,r); } else { pm.copyTo(y); pt.copyTo(r); } var ys = y.t; var y0 = y[ys-1]; if(y0 == 0) return; var yt = y0*(1<<this.F1)+((ys>1)?y[ys-2]>>this.F2:0); var d1 = this.FV/yt, d2 = (1<<this.F1)/yt, e = 1<<this.F2; var i = r.t, j = i-ys, t = (q==null)?nbi():q; y.dlShiftTo(j,t); if(r.compareTo(t) >= 0) { r[r.t++] = 1; r.subTo(t,r); } BigInteger.ONE.dlShiftTo(ys,t); t.subTo(y,y); // "negative" y so we can replace sub with am later while(y.t < ys) y[y.t++] = 0; while(--j >= 0) { // Estimate quotient digit var qd = (r[--i]==y0)?this.DM:Math.floor(r[i]*d1+(r[i-1]+e)*d2); if((r[i]+=y.am(0,qd,r,j,0,ys)) < qd) { // Try it out y.dlShiftTo(j,t); r.subTo(t,r); while(r[i] < --qd) r.subTo(t,r); } } if(q != null) { r.drShiftTo(ys,q); if(ts != ms) BigInteger.ZERO.subTo(q,q); } r.t = ys; r.clamp(); if(nsh > 0) r.rShiftTo(nsh,r); // Denormalize remainder if(ts < 0) BigInteger.ZERO.subTo(r,r); } // (public) this mod a function bnMod(a) { var r = nbi(); this.abs().divRemTo(a,null,r); if(this.s < 0 && r.compareTo(BigInteger.ZERO) > 0) a.subTo(r,r); return r; } // Modular reduction using "classic" algorithm function Classic(m) { this.m = m; } function cConvert(x) { if(x.s < 0 || x.compareTo(this.m) >= 0) return x.mod(this.m); else return x; } function cRevert(x) { return x; } function cReduce(x) { x.divRemTo(this.m,null,x); } function cMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); } function cSqrTo(x,r) { x.squareTo(r); this.reduce(r); } Classic.prototype.convert = cConvert; Classic.prototype.revert = cRevert; Classic.prototype.reduce = cReduce; Classic.prototype.mulTo = cMulTo; Classic.prototype.sqrTo = cSqrTo; // (protected) return "-1/this % 2^DB"; useful for Mont. reduction // justification: // xy == 1 (mod m) // xy = 1+km // xy(2-xy) = (1+km)(1-km) // x[y(2-xy)] = 1-k^2m^2 // x[y(2-xy)] == 1 (mod m^2) // if y is 1/x mod m, then y(2-xy) is 1/x mod m^2 // should reduce x and y(2-xy) by m^2 at each step to keep size bounded. // JS multiply "overflows" differently from C/C++, so care is needed here. function bnpInvDigit() { if(this.t < 1) return 0; var x = this[0]; if((x&1) == 0) return 0; var y = x&3; // y == 1/x mod 2^2 y = (y*(2-(x&0xf)*y))&0xf; // y == 1/x mod 2^4 y = (y*(2-(x&0xff)*y))&0xff; // y == 1/x mod 2^8 y = (y*(2-(((x&0xffff)*y)&0xffff)))&0xffff; // y == 1/x mod 2^16 // last step - calculate inverse mod DV directly; // assumes 16 < DB <= 32 and assumes ability to handle 48-bit ints y = (y*(2-x*y%this.DV))%this.DV; // y == 1/x mod 2^dbits // we really want the negative inverse, and -DV < y < DV return (y>0)?this.DV-y:-y; } // Montgomery reduction function Montgomery(m) { this.m = m; this.mp = m.invDigit(); this.mpl = this.mp&0x7fff; this.mph = this.mp>>15; this.um = (1<<(m.DB-15))-1; this.mt2 = 2*m.t; } // xR mod m function montConvert(x) { var r = nbi(); x.abs().dlShiftTo(this.m.t,r); r.divRemTo(this.m,null,r); if(x.s < 0 && r.compareTo(BigInteger.ZERO) > 0) this.m.subTo(r,r); return r; } // x/R mod m function montRevert(x) { var r = nbi(); x.copyTo(r); this.reduce(r); return r; } // x = x/R mod m (HAC 14.32) function montReduce(x) { while(x.t <= this.mt2) // pad x so am has enough room later x[x.t++] = 0; for(var i = 0; i < this.m.t; ++i) { // faster way of calculating u0 = x[i]*mp mod DV var j = x[i]&0x7fff; var u0 = (j*this.mpl+(((j*this.mph+(x[i]>>15)*this.mpl)&this.um)<<15))&x.DM; // use am to combine the multiply-shift-add into one call j = i+this.m.t; x[j] += this.m.am(0,u0,x,i,0,this.m.t); // propagate carry while(x[j] >= x.DV) { x[j] -= x.DV; x[++j]++; } } x.clamp(); x.drShiftTo(this.m.t,x); if(x.compareTo(this.m) >= 0) x.subTo(this.m,x); } // r = "x^2/R mod m"; x != r function montSqrTo(x,r) { x.squareTo(r); this.reduce(r); } // r = "xy/R mod m"; x,y != r function montMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); } Montgomery.prototype.convert = montConvert; Montgomery.prototype.revert = montRevert; Montgomery.prototype.reduce = montReduce; Montgomery.prototype.mulTo = montMulTo; Montgomery.prototype.sqrTo = montSqrTo; // (protected) true iff this is even function bnpIsEven() { return ((this.t>0)?(this[0]&1):this.s) == 0; } // (protected) this^e, e < 2^32, doing sqr and mul with "r" (HAC 14.79) function bnpExp(e,z) { if(e > 0xffffffff || e < 1) return BigInteger.ONE; var r = nbi(), r2 = nbi(), g = z.convert(this), i = nbits(e)-1; g.copyTo(r); while(--i >= 0) { z.sqrTo(r,r2); if((e&(1<<i)) > 0) z.mulTo(r2,g,r); else { var t = r; r = r2; r2 = t; } } return z.revert(r); } // (public) this^e % m, 0 <= e < 2^32 function bnModPowInt(e,m) { var z; if(e < 256 || m.isEven()) z = new Classic(m); else z = new Montgomery(m); return this.exp(e,z); } // protected BigInteger.prototype.copyTo = bnpCopyTo; BigInteger.prototype.fromInt = bnpFromInt; BigInteger.prototype.fromString = bnpFromString; BigInteger.prototype.clamp = bnpClamp; BigInteger.prototype.dlShiftTo = bnpDLShiftTo; BigInteger.prototype.drShiftTo = bnpDRShiftTo; BigInteger.prototype.lShiftTo = bnpLShiftTo; BigInteger.prototype.rShiftTo = bnpRShiftTo; BigInteger.prototype.subTo = bnpSubTo; BigInteger.prototype.multiplyTo = bnpMultiplyTo; BigInteger.prototype.squareTo = bnpSquareTo; BigInteger.prototype.divRemTo = bnpDivRemTo; BigInteger.prototype.invDigit = bnpInvDigit; BigInteger.prototype.isEven = bnpIsEven; BigInteger.prototype.exp = bnpExp; // public BigInteger.prototype.toString = bnToString; BigInteger.prototype.negate = bnNegate; BigInteger.prototype.abs = bnAbs; BigInteger.prototype.compareTo = bnCompareTo; BigInteger.prototype.bitLength = bnBitLength; BigInteger.prototype.mod = bnMod; BigInteger.prototype.modPowInt = bnModPowInt; // "constants" BigInteger.ZERO = nbv(0); BigInteger.ONE = nbv(1); #文件prng4.js // prng4.js - uses Arcfour as a PRNG function Arcfour() { this.i = 0; this.j = 0; this.S = new Array(); } // Initialize arcfour context from key, an array of ints, each from [0..255] function ARC4init(key) { var i, j, t; for(i = 0; i < 256; ++i) this.S[i] = i; j = 0; for(i = 0; i < 256; ++i) { j = (j + this.S[i] + key[i % key.length]) & 255; t = this.S[i]; this.S[i] = this.S[j]; this.S[j] = t; } this.i = 0; this.j = 0; } function ARC4next() { var t; this.i = (this.i + 1) & 255; this.j = (this.j + this.S[this.i]) & 255; t = this.S[this.i]; this.S[this.i] = this.S[this.j]; this.S[this.j] = t; return this.S[(t + this.S[this.i]) & 255]; } Arcfour.prototype.init = ARC4init; Arcfour.prototype.next = ARC4next; // Plug in your RNG constructor here function prng_newstate() { return new Arcfour(); } // Pool size must be a multiple of 4 and greater than 32. // An array of bytes the size of the pool will be passed to init() var rng_psize = 256; 文件:rng.js // Random number generator - requires a PRNG backend, e.g. prng4.js // For best results, put code like // <body onClick='rng_seed_time();' onKeyPress='rng_seed_time();'> // in your main HTML document. var rng_state; var rng_pool; var rng_pptr; // Mix in a 32-bit integer into the pool function rng_seed_int(x) { rng_pool[rng_pptr++] ^= x & 255; rng_pool[rng_pptr++] ^= (x >> 8) & 255; rng_pool[rng_pptr++] ^= (x >> 16) & 255; rng_pool[rng_pptr++] ^= (x >> 24) & 255; if(rng_pptr >= rng_psize) rng_pptr -= rng_psize; } // Mix in the current time (w/milliseconds) into the pool function rng_seed_time() { rng_seed_int(new Date().getTime()); } // Initialize the pool with junk if needed. if(rng_pool == null) { rng_pool = new Array(); rng_pptr = 0; var t; if(navigator.appName == "Netscape" && navigator.appVersion < "5" && window.crypto) { // Extract entropy (256 bits) from NS4 RNG if available var z = window.crypto.random(32); for(t = 0; t < z.length; ++t) rng_pool[rng_pptr++] = z.charCodeAt(t) & 255; } while(rng_pptr < rng_psize) { // extract some randomness from Math.random() t = Math.floor(65536 * Math.random()); rng_pool[rng_pptr++] = t >>> 8; rng_pool[rng_pptr++] = t & 255; } rng_pptr = 0; rng_seed_time(); //rng_seed_int(window.screenX); //rng_seed_int(window.screenY); } function rng_get_byte() { if(rng_state == null) { rng_seed_time(); rng_state = prng_newstate(); rng_state.init(rng_pool); for(rng_pptr = 0; rng_pptr < rng_pool.length; ++rng_pptr) rng_pool[rng_pptr] = 0; rng_pptr = 0; //rng_pool = null; } // TODO: allow reseeding after first request return rng_state.next(); } function rng_get_bytes(ba) { var i; for(i = 0; i < ba.length; ++i) ba[i] = rng_get_byte(); } function SecureRandom() {} SecureRandom.prototype.nextBytes = rng_get_bytes; #文件:rsa.js // Depends on jsbn.js and rng.js // Version 1.1: support utf-8 encoding in pkcs1pad2 // convert a (hex) string to a bignum object function parseBigInt(str,r) { return new BigInteger(str,r); } function linebrk(s,n) { var ret = ""; var i = 0; while(i + n < s.length) { ret += s.substring(i,i+n) + "\n"; i += n; } return ret + s.substring(i,s.length); } function byte2Hex(b) { if(b < 0x10) return "0" + b.toString(16); else return b.toString(16); } // PKCS#1 (type 2, random) pad input string s to n bytes, and return a bigint function pkcs1pad2(s,n) { if(n < s.length + 11) { // TODO: fix for utf-8 alert("Message too long for RSA"); return null; } var ba = new Array(); var i = s.length - 1; while(i >= 0 && n > 0) { var c = s.charCodeAt(i--); if(c < 128) { // encode using utf-8 ba[--n] = c; } else if((c > 127) && (c < 2048)) { ba[--n] = (c & 63) | 128; ba[--n] = (c >> 6) | 192; } else { ba[--n] = (c & 63) | 128; ba[--n] = ((c >> 6) & 63) | 128; ba[--n] = (c >> 12) | 224; } } ba[--n] = 0; var rng = new SecureRandom(); var x = new Array(); while(n > 2) { // random non-zero pad x[0] = 0; while(x[0] == 0) rng.nextBytes(x); ba[--n] = x[0]; } ba[--n] = 2; ba[--n] = 0; return new BigInteger(ba); } // "empty" RSA key constructor function RSAKey() { this.n = null; this.e = 0; this.d = null; this.p = null; this.q = null; this.dmp1 = null; this.dmq1 = null; this.coeff = null; } // Set the public key fields N and e from hex strings function RSASetPublic(N,E) { if(N != null && E != null && N.length > 0 && E.length > 0) { this.n = parseBigInt(N,16); this.e = parseInt(E,16); } else alert("Invalid RSA public key"); } // Perform raw public operation on "x": return x^e (mod n) function RSADoPublic(x) { return x.modPowInt(this.e, this.n); } // Return the PKCS#1 RSA encryption of "text" as an even-length hex string function RSAEncrypt(text) { var m = pkcs1pad2(text,(this.n.bitLength()+7)>>3); if(m == null) return null; var c = this.doPublic(m); if(c == null) return null; var h = c.toString(16); if((h.length & 1) == 0) return h; else return "0" + h; } // Return the PKCS#1 RSA encryption of "text" as a Base64-encoded string //function RSAEncryptB64(text) { // var h = this.encrypt(text); // if(h) return hex2b64(h); else return null; //} // protected RSAKey.prototype.doPublic = RSADoPublic; // public RSAKey.prototype.setPublic = RSASetPublic; RSAKey.prototype.encrypt = RSAEncrypt; //RSAKey.prototype.encrypt_b64 = RSAEncryptB64; HTML代码部分: 复制代码代码如下: <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"> <html> <head> <title>JavaScript RSA Encryption Demo</title> </head> <script language="JavaScript" type="text/javascript" src="./js/jsbn.js"></script> <script language="JavaScript" type="text/javascript" src="./js/prng4.js"></script> <script language="JavaScript" type="text/javascript" src="./js/rng.js"></script> <script language="JavaScript" type="text/javascript" src="./js/rsa.js"></script> <script language="JavaScript" type="text/javascript" src="./js/base64.js"></script> <script language="JavaScript"> //publc key and public length 16 binary data var public_key="00b0c2732193eebde5b2e278736a22977a5ee1bb99bea18c0681ad97484b4c7f681e963348eb80667b954534293b0a6cbe2f9651fc98c9ee833f343e719c97c670ead8bec704282f94d9873e083cfd41554f356f00aea38d2b07551733541b64790c2c8f400486fd662a3e95fd5edd2acf4d59ca97fad65cc59b8d10cbc5430c53"; var public_length="10001"; function do_encrypt() { var before = new Date(); var rsa = new RSAKey(); rsa.setPublic(public_key, public_length); var res = rsa.encrypt(document.rsatest.plaintext.value); var after = new Date(); if(res) { document.rsatest.ciphertext.value =res; document.rsatest.cipherb64.value = hex2b64(res); document.rsatest.status.value = "Time: " + (after - before) + "ms"; } } //--> </script> <form name="rsatest" action="rsa-example.php" method="post"> Plaintext (string):<br> <input name="plaintext" type="text" value="test" size=40> <input type="button" value="encrypt" onClick="do_encrypt();"><p> Ciphertext (hex):<br> <textarea name="ciphertext" rows=4 cols=70></textarea><p> Ciphertext (base64):(Not used)<br> <textarea name="cipherb64" rows=3 cols=70></textarea><p> Status:<br> <input name="status" type="text" size=40><p> <input type="submit" value="go php" /> </form> </body> </html> 后端PHP部分: RSA库: 复制代码代码如下: <?php /* * PHP implementation of the RSA algorithm * (C) Copyright 2004 Edsko de Vries, Ireland * * Licensed under the GNU Public License (GPL) * * This implementation has been verified against [3] * (tested Java/PHP interoperability). * * References: * [1] "Applied Cryptography", Bruce Schneier, John Wiley & Sons, 1996 * [2] "Prime Number Hide-and-Seek", Brian Raiter, Muppetlabs (online) * [3] "The Bouncy Castle Crypto Package", Legion of the Bouncy Castle, * (open source cryptography library for Java, online) * [4] "PKCS #1: RSA Encryption Standard", RSA Laboratories Technical Note, * version 1.5, revised November 1, 1993 */ /* * Functions that are meant to be used by the user of this PHP module. * * Notes: * - $key and $modulus should be numbers in (decimal) string format * - $message is expected to be binary data * - $keylength should be a multiple of 8, and should be in bits * - For rsa_encrypt/rsa_sign, the length of $message should not exceed * ($keylength / 8) - 11 (as mandated by [4]). * - rsa_encrypt and rsa_sign will automatically add padding to the message. * For rsa_encrypt, this padding will consist of random values; for rsa_sign, * padding will consist of the appropriate number of 0xFF values (see [4]) * - rsa_decrypt and rsa_verify will automatically remove message padding. * - Blocks for decoding (rsa_decrypt, rsa_verify) should be exactly * ($keylength / 8) bytes long. * - rsa_encrypt and rsa_verify expect a public key; rsa_decrypt and rsa_sign * expect a private key. */ /** * 于2010-11-12 1:06分于LONELY修改 */ function rsa_encrypt($message, $public_key, $modulus, $keylength) { $padded = add_PKCS1_padding($message, true, $keylength / 8); $number = binary_to_number($padded); $encrypted = pow_mod($number, $public_key, $modulus); $result = number_to_binary($encrypted, $keylength / 8); return $result; } function rsa_decrypt($message, $private_key, $modulus, $keylength) { $number = binary_to_number($message); $decrypted = pow_mod($number, $private_key, $modulus); $result = number_to_binary($decrypted, $keylength / 8); return remove_PKCS1_padding($result, $keylength / 8); } function rsa_sign($message, $private_key, $modulus, $keylength) { $padded = add_PKCS1_padding($message, false, $keylength / 8); $number = binary_to_number($padded); $signed = pow_mod($number, $private_key, $modulus); $result = number_to_binary($signed, $keylength / 8); return $result; } function rsa_verify($message, $public_key, $modulus, $keylength) { return rsa_decrypt($message, $public_key, $modulus, $keylength); } function rsa_kyp_verify($message, $public_key, $modulus, $keylength) { $number = binary_to_number($message); $decrypted = pow_mod($number, $public_key, $modulus); $result = number_to_binary($decrypted, $keylength / 8); return remove_KYP_padding($result, $keylength / 8); } /* * Some constants */ define("BCCOMP_LARGER", 1); /* * The actual implementation. * Requires BCMath support in PHP (compile with --enable-bcmath) */ //-- // Calculate (p ^ q) mod r // // We need some trickery to [2]: // (a) Avoid calculating (p ^ q) before (p ^ q) mod r, because for typical RSA // applications, (p ^ q) is going to be _WAY_ too large. // (I mean, __WAY__ too large - won't fit in your computer's memory.) // (b) Still be reasonably efficient. // // We assume p, q and r are all positive, and that r is non-zero. // // Note that the more simple algorithm of multiplying $p by itself $q times, and // applying "mod $r" at every step is also valid, but is O($q), whereas this // algorithm is O(log $q). Big difference. // // As far as I can see, the algorithm I use is optimal; there is no redundancy // in the calculation of the partial results. //-- function pow_mod($p, $q, $r) { // Extract powers of 2 from $q $factors = array(); $div = $q; $power_of_two = 0; while(bccomp($div, "0") == BCCOMP_LARGER) { $rem = bcmod($div, 2); $div = bcdiv($div, 2); if($rem) array_push($factors, $power_of_two); $power_of_two++; } // Calculate partial results for each factor, using each partial result as a // starting point for the next. This depends of the factors of two being // generated in increasing order. $partial_results = array(); $part_res = $p; $idx = 0; foreach($factors as $factor) { while($idx < $factor) { $part_res = bcpow($part_res, "2"); $part_res = bcmod($part_res, $r); $idx++; } array_push($partial_results, $part_res); } // Calculate final result $result = "1"; foreach($partial_results as $part_res) { $result = bcmul($result, $part_res); $result = bcmod($result, $r); } return $result; } //-- // Function to add padding to a decrypted string // We need to know if this is a private or a public key operation [4] //-- function add_PKCS1_padding($data, $isPublicKey, $blocksize) { $pad_length = $blocksize - 3 - strlen($data); if($isPublicKey) { $block_type = "\x02"; $padding = ""; for($i = 0; $i < $pad_length; $i++) { $rnd = mt_rand(1, 255); $padding .= chr($rnd); } } else { $block_type = "\x01"; $padding = str_repeat("\xFF", $pad_length); } return "\x00" . $block_type . $padding . "\x00" . $data; } //-- // Remove padding from a decrypted string // See [4] for more details. //-- function remove_PKCS1_padding($data, $blocksize) { //以下部分于原版的RSA有所不同,修复了原版的一个BUG //assert(strlen($data) == $blocksize); $data = substr($data, 1); // We cannot deal with block type 0 if($data{0} == '\0') die("Block type 0 not implemented."); // Then the block type must be 1 or 2 //assert(($data{0} == "\x01") || ($data{0} == "\x02")); // echo $data; // Remove the padding $i=1; while (1){ $offset = strpos($data, "\0", $i); if(!$offset){ $offset=$i; break; } $i=$offset+1; } //$offset = strpos($data, "\0", 100); return substr($data, $offset); } //-- // Remove "kyp" padding // (Non standard) //-- function remove_KYP_padding($data, $blocksize) { assert(strlen($data) == $blocksize); $offset = strpos($data, "\0"); return substr($data, 0, $offset); } //-- // Convert binary data to a decimal number //-- function binary_to_number($data) { $base = "256"; $radix = "1"; $result = "0"; for($i = strlen($data) - 1; $i >= 0; $i--) { $digit = ord($data{$i}); $part_res = bcmul($digit, $radix); $result = bcadd($result, $part_res); $radix = bcmul($radix, $base); } return $result; } //-- // Convert a number back into binary form //-- function number_to_binary($number, $blocksize) { $base = "256"; $result = ""; $div = $number; while($div > 0) { $mod = bcmod($div, $base); $div = bcdiv($div, $base); $result = chr($mod) . $result; } return str_pad($result, $blocksize, "\x00", STR_PAD_LEFT); } ?>
处理的PHP代码:
<?php //Decimal Data include "rsa.php"; $modulus='124124790696783899579957666732205416556275207289308772677367395397704314099727565633927507139389670490184904760526156031441045563225987129220634807383637837918320623518532877734472159024203477820731033762885040862183213160281165618500092483026873487507336293388981515466164416989192069833140532570993394388051.0000000000'; $private='59940207454900542501281722336097731406274284149290386158861762508911700758780200454438527029729836453810395133453343700246367853044479311924174899432036400630350527132581124575735909908195078492323048176864577497230467497768502277772070557874686662727818507841304646138785432507752788647631021854537869399041.0000000000'; $public="65537"; $keylength="1024"; //php encrypt create //$encrypted = rsa_encrypt("vzxcvz bdxf", $public, $modulus, $keylength); //$str= bin2hex($encrypted);//bin data to hex data $str=$_POST['ciphertext']; //echo $str."<br>"; $encrypted=convert($str); //hex data to bin data $decrypted = rsa_decrypt($encrypted, $private, $modulus, $keylength); echo $decrypted."<br>"; /** * 16 to 2 * @param unknown_type $hexString * @return string|unknown */ function convert($hexString) { $hexLenght = strlen($hexString); // only hex numbers is allowed if ($hexLenght % 2 != 0 || preg_match("/[^\da-fA-F]/",$hexString)) return FALSE; unset($binString); for ($x = 1; $x <= $hexLenght/2; $x++) { $binString .= chr(hexdec(substr($hexString,2 * $x - 2,2))); } return $binString; } ?>
生成PRM文件及生产需要的密钥及公钥的PHP文件:
<?php //create pem file //run openssl genrsa -out key.pem 1024 //This file is generated variables needed for the operation list($keylength, $modulus, $public, $private,$modulus_js,$private_js) = read_ssl_key("key.pem"); echo "keylength:(php and js)(private length)<br>"; echo $keylength; echo "<br>"; echo "modulus:(php)(10)(pubic key)<br>"; echo $modulus; echo "<br>"; echo "modulus:(js)(16)(pubic key)<br>"; echo $modulus_js; echo "<br>"; echo "public:(php)(10)(public exponent)<br>"; echo $public; echo "<br>"; echo "public:(js)(16)(public exponent)<br>"; echo "10001"; echo "<br>"; echo "private:(php)(10)(private key)<br>"; echo $private; echo "<br>"; echo "private:(js)(16)(private key)<br>"; echo $private_js; //function function read_ssl_key($filename) { exec("openssl rsa -in $filename -text -noout", $raw); // read the key length $keylength = (int) expect($raw[0], "Private-Key: ("); // read the modulus expect($raw[1], "modulus:"); for($i = 2; $raw[$i][0] == ' '; $i++) $modulusRaw .= trim($raw[$i]); // read the public exponent $public = (int) expect($raw[$i], "publicExponent: "); // read the private exponent expect($raw[$i + 1], "privateExponent:"); for($i += 2; $raw[$i][0] == ' '; $i++) $privateRaw .= trim($raw[$i]); // Just to make sure expect($raw[$i], "prime1:"); // Conversion to decimal format for bcmath $modulus = bc_hexdec($modulusRaw); $private = bc_hexdec($privateRaw); return array($keylength, $modulus['php'], $public, $private['php'],$modulus['js'], $private['js']); } /* * Convert a hexadecimal number of the form "XX:YY:ZZ:..." to decimal * Uses BCmath, but the standard normal hexdec function for the components */ function bc_hexdec($hex) { $coefficients = explode(":", $hex); $result_js= implode("",$coefficients); $i = 0; $result = 0; foreach(array_reverse($coefficients) as $coefficient) { $mult = bcpow(256, $i++); $result = bcadd($result, bcmul(hexdec($coefficient), $mult)); } return array('php'=>$result,'js'=>$result_js); } /* * If the string has the given prefix, return the remainder. * If not, die with an error */ function expect($str, $prefix) { if(substr($str, 0, strlen($prefix)) == $prefix) return substr($str, strlen($prefix)); else die("Error: expected $prefix"); }
整套加密及解密的方法都在上面了,本人的测试环境为php5.3+WIN7
更多PHP+JS+rsa数据加密传输实现代码相关文章请关注PHP中文网!