欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

[SVG] 根据SVG椭圆弧路径参数计算中心点坐标、起始角度、结束角度的Javascript函数...

程序员文章站 2022-03-31 12:28:25
...

SVG spec 1.2以及之前的版本标准中,都只有一种绘制椭圆弧的方式,即以起点、终点、长半轴、短半轴、大小弧标记、顺逆时针方向标记、倾角为参数来确定一段弧。这个方法很强大并灵活,可绘制任意的椭圆弧。有时候我们需要计算圆弧的圆心和起始角度、结束角度,虽然标准官方文档给出了计算公式的描述,但是没有给出直接的代码。我根据标准文档以及网上的资料,写了一个Javascript函数来做这件事。

    // svg : [A | a] (rx ry x-axis-rotation large-arc-flag sweep-flag x y)+

    /* x1 y1 x2 y2 fA fS rx ry φ */
    function  radian( ux, uy, vx, vy ) {
        var  dot = ux * vx + uy * vy;
        var  mod = Math.sqrt( ( ux * ux + uy * uy ) * ( vx * vx + vy * vy ) );
        var  rad = Math.acos( dot / mod );
        if( ux * vy - uy * vx < 0.0 ) rad = -rad;
        return  rad;
    }
    //conversion_from_endpoint_to_center_parameterization
    //sample :  convert(200,200,300,200,1,1,50,50,0,{})
    function convert(x1, y1, x2, y2, fA, fS, rx, ry, phi) {
            var cx,cy,theta1,delta_theta;

            if( rx == 0.0 || ry == 0.0 ) return -1;  // invalid arguments

            var  s_phi = Math.sin( phi );
            var  c_phi = Math.cos( phi );
            var  hd_x = ( x1 - x2 ) / 2.0;   // half diff of x
            var  hd_y = ( y1 - y2 ) / 2.0;   // half diff of y
            var  hs_x = ( x1 + x2 ) / 2.0;   // half sum of x
            var  hs_y = ( y1 + y2 ) / 2.0;   // half sum of y

            // F6.5.1
            var  x1_ = c_phi * hd_x + s_phi * hd_y;
            var  y1_ = c_phi * hd_y - s_phi * hd_x;

            var  rxry = rx * ry;
            var  rxy1_ = rx * y1_;
            var  ryx1_ = ry * x1_;
            var  sum_of_sq = rxy1_ * rxy1_ + ryx1_ * ryx1_;   // sum of square
            var  coe = Math.sqrt( ( rxry * rxry - sum_of_sq ) / sum_of_sq );
            if( fA == fS ) coe = -coe;

            // F6.5.2
            var  cx_ = coe * rxy1_ / ry;
            var  cy_ = -coe * ryx1_ / rx;

            // F6.5.3
            cx = c_phi * cx_ - s_phi * cy_ + hs_x;
            cy = s_phi * cx_ + c_phi * cy_ + hs_y;

            var  xcr1 = ( x1_ - cx_ ) / rx;
            var  xcr2 = ( x1_ + cx_ ) / rx;
            var  ycr1 = ( y1_ - cy_ ) / ry;
            var  ycr2 = ( y1_ + cy_ ) / ry;

            // F6.5.5
            theta1 = radian( 1.0, 0.0, xcr1, ycr1 );

            // F6.5.6
            delta_theta = radian( xcr1, ycr1, -xcr2, -ycr2 );
            var  PIx2 = Math.PI * 2.0;
            while( delta_theta > PIx2 ) delta_theta -= PIx2;
            while( delta_theta < 0.0 ) delta_theta += PIx2;
            if( fS == false ) delta_theta -= PIx2;

            var outputObj = { /* cx, cy, theta1, delta_theta */ 
                cx : cx,
                cy : cy,
                theta1 : theta1,
                delta_theta : delta_theta
            }
            console.dir(outputObj);

            return outputObj;
    }


SVG spec 1.2以及之前的版本标准中,都只有一种绘制椭圆弧的方式,即以起点、终点、长半轴、短半轴、大小弧标记、顺逆时针方向标记、倾角为参数来确定一段弧。这个方法很强大并灵活,可绘制任意的椭圆弧。有时候我们需要计算圆弧的圆心和起始角度、结束角度,虽然标准官方文档给出了计算公式的描述,但是没有给出直接的代码。我根据标准文档以及网上的资料,写了一个Javascript函数来做这件事。

    // svg : [A | a] (rx ry x-axis-rotation large-arc-flag sweep-flag x y)+

    /* x1 y1 x2 y2 fA fS rx ry φ */
    function  radian( ux, uy, vx, vy ) {
        var  dot = ux * vx + uy * vy;
        var  mod = Math.sqrt( ( ux * ux + uy * uy ) * ( vx * vx + vy * vy ) );
        var  rad = Math.acos( dot / mod );
        if( ux * vy - uy * vx < 0.0 ) rad = -rad;
        return  rad;
    }
    //conversion_from_endpoint_to_center_parameterization
    //sample :  convert(200,200,300,200,1,1,50,50,0,{})
    function convert(x1, y1, x2, y2, fA, fS, rx, ry, phi) {
            var cx,cy,theta1,delta_theta;

            if( rx == 0.0 || ry == 0.0 ) return -1;  // invalid arguments

            var  s_phi = Math.sin( phi );
            var  c_phi = Math.cos( phi );
            var  hd_x = ( x1 - x2 ) / 2.0;   // half diff of x
            var  hd_y = ( y1 - y2 ) / 2.0;   // half diff of y
            var  hs_x = ( x1 + x2 ) / 2.0;   // half sum of x
            var  hs_y = ( y1 + y2 ) / 2.0;   // half sum of y

            // F6.5.1
            var  x1_ = c_phi * hd_x + s_phi * hd_y;
            var  y1_ = c_phi * hd_y - s_phi * hd_x;

            var  rxry = rx * ry;
            var  rxy1_ = rx * y1_;
            var  ryx1_ = ry * x1_;
            var  sum_of_sq = rxy1_ * rxy1_ + ryx1_ * ryx1_;   // sum of square
            var  coe = Math.sqrt( ( rxry * rxry - sum_of_sq ) / sum_of_sq );
            if( fA == fS ) coe = -coe;

            // F6.5.2
            var  cx_ = coe * rxy1_ / ry;
            var  cy_ = -coe * ryx1_ / rx;

            // F6.5.3
            cx = c_phi * cx_ - s_phi * cy_ + hs_x;
            cy = s_phi * cx_ + c_phi * cy_ + hs_y;

            var  xcr1 = ( x1_ - cx_ ) / rx;
            var  xcr2 = ( x1_ + cx_ ) / rx;
            var  ycr1 = ( y1_ - cy_ ) / ry;
            var  ycr2 = ( y1_ + cy_ ) / ry;

            // F6.5.5
            theta1 = radian( 1.0, 0.0, xcr1, ycr1 );

            // F6.5.6
            delta_theta = radian( xcr1, ycr1, -xcr2, -ycr2 );
            var  PIx2 = Math.PI * 2.0;
            while( delta_theta > PIx2 ) delta_theta -= PIx2;
            while( delta_theta < 0.0 ) delta_theta += PIx2;
            if( fS == false ) delta_theta -= PIx2;

            var outputObj = { /* cx, cy, theta1, delta_theta */ 
                cx : cx,
                cy : cy,
                theta1 : theta1,
                delta_theta : delta_theta
            }
            console.dir(outputObj);

            return outputObj;
    }