欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

imutils库源码解析,看它如何调用opencv(面部识别)

程序员文章站 2022-03-31 11:59:18
imutils 这个图像处理工具包,除了简化 opencv 的一些操作之外,还有专门配合 dlib 处理人脸数据的工具 face_utils。dlib 提取人脸数据后,五官都是用一些特征点来表示的,每个部位的点的索引是固定的,想要进一步操作就得对这些点进行处理,而 face_utils 就是简化这些点的表现方式本文就来解析一下 face_utils 的处理方法,方便我们理解它的用处特征点索引提取查看源码:#For dlib’s 68-point facial landmark detector:...

imutils 这个图像处理工具包,除了简化 opencv 的一些操作之外,还有专门配合 dlib 处理人脸数据的工具 face_utils。dlib 提取人脸数据后,五官都是用一些特征点来表示的,每个部位的点的索引是固定的,想要进一步操作就得对这些点进行处理,而 face_utils 就是简化这些点的表现方式

本文就来解析一下 face_utils 的处理方法,方便我们理解它的用处


特征点索引提取

查看源码:

#For dlib’s 68-point facial landmark detector:
FACIAL_LANDMARKS_68_IDXS = OrderedDict([
	("mouth", (48, 68)),
	("inner_mouth", (60, 68)),
	("right_eyebrow", (17, 22)),
	("left_eyebrow", (22, 27)),
	("right_eye", (36, 42)),
	("left_eye", (42, 48)),
	("nose", (27, 36)),
	("jaw", (0, 17))
])

特征点区域图:
imutils库源码解析,看它如何调用opencv(面部识别)
dlib 提取人脸特征点是用 68 个点包围每个部位,如上图,例如第 37 个点到第 42 个点就代表右眼,在图片上这几个点若显示出来就是把右眼那块区域包围着,可以通过这些点之间距离的变化来判断人脸的变化,比如是否眨眼等操作

imutils 通过 OrderedDict 把这些点的索引与其表示的区域直接通过字典形式联系起来,之后再提取某个部位的点时,就不用去查点的索引分布了,例如想提取嘴部特征点,其索引可以通过:

(mStart, mEnd) = face_utils.FACIAL_LANDMARKS_68_IDXS["mouth"]

FACIAL_LANDMARKS_68_IDXS 打印出来看看:
imutils库源码解析,看它如何调用opencv(面部识别)


人脸区域坐标转换

查看源码:

def rect_to_bb(rect):
	# take a bounding predicted by dlib and convert it
	# to the format (x, y, w, h) as we would normally do
	# with OpenCV
	x = rect.left()
	y = rect.top()
	w = rect.right() - x
	h = rect.bottom() - y

	# return a tuple of (x, y, w, h)
	return (x, y, w, h)

dlib 提取人脸区域是后是用 4 个数表示,分别代表上下左右的边界。

rect_to_bb 将其转换为坐标信息,即(左上角横坐标, 左上角纵坐标, 矩形宽度, 矩形长度),之后就可以通过这个坐标将人脸区域用矩形框出来显示


特征点坐标提取

查看源码:

def shape_to_np(shape, dtype="int"):
	# initialize the list of (x, y)-coordinates
	coords = np.zeros((shape.num_parts, 2), dtype=dtype)

	# loop over all facial landmarks and convert them
	# to a 2-tuple of (x, y)-coordinates
	for i in range(0, shape.num_parts):
		coords[i] = (shape.part(i).x, shape.part(i).y)

	# return the list of (x, y)-coordinates
	return coords

dlib 提取人脸的 68 个特征点之后,是用自身的 dlib.full_object_detection 格式保存它们的坐标信息,每次提取坐标都需要用 (shape.part(i).x, shape.part(i).y)形式

shape_to_np 将 68 个特征点的坐标提取出来后,再用 numpy 保存为坐标点矩阵,方便其使用


标记人脸部位

查看源码:

def visualize_facial_landmarks(image, shape, colors=None, alpha=0.75):
	# create two copies of the input image -- one for the
	# overlay and one for the final output image
	overlay = image.copy()
	output = image.copy()

	# if the colors list is None, initialize it with a unique
	# color for each facial landmark region
	if colors is None:
		colors = [(19, 199, 109), (79, 76, 240), (230, 159, 23),
			(168, 100, 168), (158, 163, 32),
			(163, 38, 32), (180, 42, 220)]

	# loop over the facial landmark regions individually
	for (i, name) in enumerate(FACIAL_LANDMARKS_IDXS.keys()):
		# grab the (x, y)-coordinates associated with the
		# face landmark
		(j, k) = FACIAL_LANDMARKS_IDXS[name]
		pts = shape[j:k]

		# check if are supposed to draw the jawline
		if name == "jaw":
			# since the jawline is a non-enclosed facial region,
			# just draw lines between the (x, y)-coordinates
			for l in range(1, len(pts)):
				ptA = tuple(pts[l - 1])
				ptB = tuple(pts[l])
				cv2.line(overlay, ptA, ptB, colors[i], 2)

		# otherwise, compute the convex hull of the facial
		# landmark coordinates points and display it
		else:
			hull = cv2.convexHull(pts)
			cv2.drawContours(overlay, [hull], -1, colors[i], -1)

	# apply the transparent overlay
	cv2.addWeighted(overlay, alpha, output, 1 - alpha, 0, output)

	# return the output image
	return output

68 个特征点提取出来后,已经将人脸的每个部位标记出来,之后就可以每个部位进行标记,例如将每个部位用不同颜色覆盖。而上面代码中的函数就是进行这个操作

2 个必要参数:

  • image:输入图像
  • shape:特征点坐标矩阵

使用后效果图:
imutils库源码解析,看它如何调用opencv(面部识别)
里面使用了 opencv 的 convexHulldrawContoursaddWeighted 方法,看一下它们的参数和作用:
cv2.convexHull(points,clockwise,returnpoints)

  • points:输入的坐标点,通常为1* n * 2 结构,n为所有的坐标点的数目
  • clockwise:转动方向,TRUE为顺时针,否则为逆时针
  • returnPoints:默认为TRUE,返回凸包上点的坐标,如果设置为FALSE,会返回与凸包点对应的轮廓上的点
    此函数是找寻凸包,不严谨的说是将最外层的点连接起来构成的凸多边形,即把边缘点连接起来

cv2.drawContours(image,contours,contourIdx,color,thickness=None,lineType=None,hierarchy=None,maxLevel=None,offset=None)

  • image:输入图像
  • contours:轮廓列表
  • contourIdx:列表中的哪条轮廓
  • color:绘制颜色
  • thickness:轮廓线的宽度,如果是 -1 (cv2.FILLED),则为填充模式
    此函数是将轮廓线条绘制出来,内部空间也可以填充

cv2.addWeighted(image1, alpha,image2,beta,gamma[,dst[,dtype]])

  • image1:输入图像1
  • alpha:图像1的权重
  • image2:输入图像2,与图像1的尺寸和通道数相同
  • beta:图像2的权重
  • gamma:加到每个总和上的标量,相当于调亮度
  • dst:输出
    此函数是将图像进行叠加,两个图像的权重自行选择

经过这 3 个方法后,人脸的每个部位就被标记出来了

本文地址:https://blog.csdn.net/weixin_44613063/article/details/107105690