欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

Elasticsearch Sliced Scroll分页检索案例分享

程序员文章站 2022-03-31 08:43:26
...
Elasticsearch Sliced Scroll分页检索案例分享

我们在文章《Elasticsearch Scroll分页检索案例分享》中介绍了elasticsearch scroll的基本用法,本文介绍Elasticsearch Sliced Scroll分页检索功能。

1.准备工作
参考文档《高性能elasticsearch ORM开发库使用介绍》导入和配置es客户端

2.定义Sliced Scroll检索dsl
创建配置文件-在resources目录下定义文件scroll.xml
esmapper/scroll.xml
文件内容包含Sliced Scroll检索dsl语句-scrollSliceQuery
<property name="scrollSliceQuery">
        <![CDATA[
         {
           "slice": {
                "id": $id,
                "max": $max
            },
            "size":$size,
            "query": {
                "term" : {
                    "gc.jvmGcOldCount" : 3
                }
            }
        }
        ]]>
    </property>

3.串行方式执行slice检索
/**
 * 串行方式执行slice scroll操作
 */
@Test
public void testSliceScroll() {
	ClientInterface clientUtil = ElasticSearchHelper.getConfigRestClientUtil("esmapper/scroll.xml");
	List<String> scrollIds = new ArrayList<>();
	long starttime = System.currentTimeMillis();
	//scroll slice分页检索
	int max = 6;
	long realTotalSize = 0;
	for (int i = 0; i < max; i++) {
		Map params = new HashMap();
		params.put("id", i);
		params.put("max", max);//最多6个slice,不能大于share数
		params.put("size", 100);//每页100条记录
		ESDatas<Map> sliceResponse = clientUtil.searchList("agentstat-*/_search?scroll=1m",
				"scrollSliceQuery", params,Map.class);
		List<Map> sliceDatas = sliceResponse.getDatas();
		realTotalSize = realTotalSize + sliceDatas.size();
		long totalSize = sliceResponse.getTotalSize();
		String scrollId = sliceResponse.getScrollId();
		if (scrollId != null)
			scrollIds.add(scrollId);
		System.out.println("totalSize:" + totalSize);
		System.out.println("scrollId:" + scrollId);
		if (sliceDatas != null && sliceDatas.size() >= 100) {//每页100条记录,迭代scrollid,遍历scroll分页结果
			do {
				sliceResponse = clientUtil.searchScroll("1m", scrollId, Map.class);
				String sliceScrollId = sliceResponse.getScrollId();
				if (sliceScrollId != null)
					scrollIds.add(sliceScrollId);
				sliceDatas = sliceResponse.getDatas();
				if (sliceDatas == null || sliceDatas.size() < 100) {
					break;
				}
				realTotalSize = realTotalSize + sliceDatas.size();
			} while (true);
		}
	}
      //打印处理耗时和实际检索到的数据
	long endtime = System.currentTimeMillis();
	System.out.println("耗时:"+(endtime - starttime)+",realTotalSize:"+realTotalSize);
	//查询存在es服务器上的scroll上下文信息
	String scrolls = clientUtil.executeHttp("_nodes/stats/indices/search", ClientUtil.HTTP_GET);
	System.out.println(scrolls);
	//处理完毕后清除scroll上下文信息
	if(scrollIds.size() > 0) {
		scrolls = clientUtil.deleteScrolls(scrollIds);
		System.out.println(scrolls);
	}
	//清理完毕后查看scroll上下文信息
	scrolls = clientUtil.executeHttp("_nodes/stats/indices/search", ClientUtil.HTTP_GET);
	System.out.println(scrolls);
}

4.并行方式执行slice检索
//用来存放实际slice检索总记录数
long realTotalSize ;
//辅助方法,用来累计每次scroll获取到的记录数
synchronized void incrementSize(int size){
	this.realTotalSize = this.realTotalSize + size;
}
/**
 * 并行方式执行slice scroll操作
 */
@Test
public void testParralSliceScroll() {
	final ClientInterface clientUtil = ElasticSearchHelper.getConfigRestClientUtil("esmapper/scroll.xml");
	final List<String> scrollIds = new ArrayList<>();
	long starttime = System.currentTimeMillis();
	//scroll slice分页检索
	final int max = 6;
	final CountDownLatch countDownLatch = new CountDownLatch(max);//线程任务完成计数器,每个线程对应一个sclice,每运行完一个slice任务,countDownLatch计数减去1

	for (int j = 0; j < max; j++) {//启动max个线程,并行处理每个slice任务
		final int i = j;
		Thread sliceThread = new Thread(new Runnable() {//多线程并行执行scroll操作做,每个线程对应一个sclice

			@Override
			public void run() {
				Map params = new HashMap();
				params.put("id", i);
				params.put("max", max);//最多6个slice,不能大于share数
				params.put("size", 100);//每页100条记录
				ESDatas<Map> sliceResponse = clientUtil.searchList("agentstat-*/_search?scroll=1m",
						"scrollSliceQuery", params,Map.class);
				List<Map> sliceDatas = sliceResponse.getDatas();
				incrementSize( sliceDatas.size());//统计实际处理的文档数量
				long totalSize = sliceResponse.getTotalSize();
				String scrollId = sliceResponse.getScrollId();
				if (scrollId != null)
					scrollIds.add(scrollId);
				System.out.println("totalSize:" + totalSize);
				System.out.println("scrollId:" + scrollId);
				if (sliceDatas != null && sliceDatas.size() >= 100) {//每页100条记录,迭代scrollid,遍历scroll分页结果
					do {
						sliceResponse = clientUtil.searchScroll("1m", scrollId, Map.class);
						String sliceScrollId = sliceResponse.getScrollId();
						if (sliceScrollId != null)
							scrollIds.add(sliceScrollId);
						sliceDatas = sliceResponse.getDatas();
						if (sliceDatas == null || sliceDatas.size() < 100) {
							break;
						}
						incrementSize( sliceDatas.size());//统计实际处理的文档数量
					} while (true);
				}
				countDownLatch.countDown();//slice检索完毕后计数器减1
			}

		});
		sliceThread.start();//启动线程
	}
	try {
		countDownLatch.await();//等待所有的线程执行完毕,计数器变成0
	} catch (InterruptedException e) {
		e.printStackTrace();
	}
      //打印处理耗时和实际检索到的数据
	long endtime = System.currentTimeMillis();
	System.out.println("耗时:"+(endtime - starttime)+",realTotalSize:"+realTotalSize);
	//查询存在es服务器上的scroll上下文信息
	String scrolls = clientUtil.executeHttp("_nodes/stats/indices/search", ClientUtil.HTTP_GET);
//		System.out.println(scrolls);
	//处理完毕后清除scroll上下文信息
	if(scrollIds.size() > 0) {
		scrolls = clientUtil.deleteScrolls(scrollIds);
//			System.out.println(scrolls);
	}
	//清理完毕后查看scroll上下文信息
	scrolls = clientUtil.executeHttp("_nodes/stats/indices/search", ClientUtil.HTTP_GET);
//		System.out.println(scrolls);
}

通过串行运行和并行运行结果比较,并行处理的性能要好很多,实际检索到的文档数量等价一致。

5.参考文档
https://www.elastic.co/guide/en/elasticsearch/reference/6.2/search-request-scroll.html

6.开发交流
elasticsearch技术交流群:166471282

elasticsearch微信公众号:
Elasticsearch Sliced Scroll分页检索案例分享
            
    
    博客分类: bboss elastic elasticsearchbbossscrollslice