欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

postgresql 索引之 hash的使用详解

程序员文章站 2022-03-31 08:34:51
os: ubuntu 16.04postgresql: 9.6.8ip 规划192.168.56.102 node2 postgresqlhelp create indexpostgres=# \h...

os: ubuntu 16.04

postgresql: 9.6.8

ip 规划

192.168.56.102 node2 postgresql

help create index

postgres=# \h create index
command:   create index
description: define a new index
syntax:
create [ unique ] index [ concurrently ] [ [ if not exists ] name ] on table_name [ using method ]
  ( { column_name | ( expression ) } [ collate collation ] [ opclass ] [ asc | desc ] [ nulls { first | last } ] [, ...] )
  [ with ( storage_parameter = value [, ... ] ) ]
  [ tablespace tablespace_name ]
  [ where predicate ]

[ using method ]

method

要使用的索引方法的名称。可以选择 btree、hash、 gist、spgist、 gin以及brin。 默认方法是btree。

hash

hash 只能处理简单的等值比较,

postgres=# drop table tmp_t0;
drop table
postgres=# create table tmp_t0(c0 varchar(100),c1 varchar(100));
create table
postgres=# insert into tmp_t0(c0,c1) select md5(id::varchar),md5((id+id)::varchar) from generate_series(1,100000) as id;
insert 0 100000
postgres=# create index idx_tmp_t0_1 on tmp_t0 using hash(c0);
create index
postgres=# \d+ tmp_t0
                     table "public.tmp_t0"
 column |     type     | collation | nullable | default | storage | stats target | description 
--------+------------------------+-----------+----------+---------+----------+--------------+-------------
 c0   | character varying(100) |      |     |     | extended |       | 
 c1   | character varying(100) |      |     |     | extended |       | 
indexes:
  "idx_tmp_t0_1" hash (c0)
postgres=# explain select * from tmp_t0 where c0 = 'd3d9446802a44259755d38e6d163e820';
                 query plan                 
----------------------------------------------------------------------------
 index scan using idx_tmp_t0_1 on tmp_t0 (cost=0.00..8.02 rows=1 width=66)
  index cond: ((c0)::text = 'd3d9446802a44259755d38e6d163e820'::text)
(2 rows)

注意事项,官网特别强调:

hash索引操作目前不被wal记录,因此存在未写入修改,在数据库崩溃后需要用reindex命令重建hash索引。

同样,在完成初始的基础备份后,对于hash索引的改变也不会通过流式或基于文件的复制所复制,所以它们会对其后使用它们的查询给出错误的答案。

正因为这些原因,hash索引已不再被建议使用。

补充:postgresql hash索引介绍

hash索引的结构

当数据插入索引时,我们会为这个索引键通过哈希函数计算一个值。 postgresql中的哈希函数始终返回“整数”类型,范围为2^32≈40亿。bucket桶的数量最初为2个,然后动态增加以适应数据大小。可以使用位算法从哈希码计算出桶编号。这个bucket将存放tid。

由于可以将与不同索引键匹配的tid放入同一bucket桶中。而且除了tid之外,还可以将键的源值存储在bucket桶中,但这会增加索引大小。为了节省空间,bucket桶只存储索引键的哈希码,而不存储索引键。

当我们通过索引查询时,我们计算索引键的哈希函数并获取bucket桶的编号。现在,仍然需要遍历存储桶的内容,并仅返回所需的哈希码匹配的tid。由于存储的“hash code - tid”对是有序的,因此可以高效地完成此操作。

但是,两个不同的索引键可能会发生以下情况,两个索引键都进入一个bucket桶,而且具有相同的四字节的哈希码。因此,索引访问方法要求索引引擎重新检查表行中的情况来验证每个tid。

映射数据结构到page

postgresql 索引之 hash的使用详解

meta page - 0号page,包含索引内部相关信息

bucket pages - 索引的主要page,存储 “hash code - tid” 对

overflow pages - 与bucket page的结构相同,在不足一个page时,作为bucket桶使用

bitmap pages - 跟踪当前干净的overflow page,并可将其重新用于其他bucket桶

注意,哈希索引不能减​​小大小。虽然我们删除了一些索引行,但是分配的页面将不会返回到操作系统,只会在vacuuming之后重新用于新数据。减小索引大小的唯一选项是使用reindex或vacuum full命令从头开始重建索引

接下来看下hash索引如何创建

demo=# create index on flights using hash(flight_no);
demo=# explain (costs off) select * from flights where flight_no = 'pg0001';
           query plan           
----------------------------------------------------
 bitmap heap scan on flights
  recheck cond: (flight_no = 'pg0001'::bpchar)
  -> bitmap index scan on flights_flight_no_idx
     index cond: (flight_no = 'pg0001'::bpchar)
(4 rows)

注意:10版本之前hash索引不记录到wal中,所以hash索引不能做recovery,当然也就不能复制了,但是从10版本以后hash所用得到了增强,可以记录到wal中,创建的时候也不会再有警告。

查看hash访问方法相关的操作函数

demo=# select  opf.opfname as opfamily_name,
     amproc.amproc::regproc as opfamily_procedure
from   pg_am am,
     pg_opfamily opf,
     pg_amproc amproc
where  opf.opfmethod = am.oid
and   amproc.amprocfamily = opf.oid
and   am.amname = 'hash'
order by opfamily_name,
     opfamily_procedure;
  
   opfamily_name  |  opfamily_procedure  
--------------------+-------------------------
 abstime_ops    | hashint4extended
 abstime_ops    | hashint4
 aclitem_ops    | hash_aclitem
 aclitem_ops    | hash_aclitem_extended
 array_ops     | hash_array
 array_ops     | hash_array_extended
 bool_ops      | hashcharextended
 bool_ops      | hashchar
 bpchar_ops     | hashbpcharextended
 bpchar_ops     | hashbpchar
 bpchar_pattern_ops | hashbpcharextended
 bpchar_pattern_ops | hashbpchar
 bytea_ops     | hashvarlena
 bytea_ops     | hashvarlenaextended
 char_ops      | hashcharextended
 char_ops      | hashchar
 cid_ops      | hashint4extended
 cid_ops      | hashint4
 date_ops      | hashint4extended
 date_ops      | hashint4
 enum_ops      | hashenumextended
 enum_ops      | hashenum
 float_ops     | hashfloat4extended
 float_ops     | hashfloat8extended
 float_ops     | hashfloat4
 float_ops     | hashfloat8
 ...

可以用这些函数计算相关类型的哈希码

hank=# select hashtext('zhang');
 hashtext  
-------------
 -1172392837
(1 row)
hank=# select hashint4(10);
 hashint4  
-------------
 -1547814713
(1 row)

hash索引相关的属性

hank=# select a.amname, p.name, pg_indexam_has_property(a.oid,p.name)
hank-# from pg_am a,
hank-#   unnest(array['can_order','can_unique','can_multi_col','can_exclude']) p(name)
hank-# where a.amname = 'hash'
hank-# order by a.amname;
 amname |   name   | pg_indexam_has_property 
--------+---------------+-------------------------
 hash  | can_order   | f
 hash  | can_unique  | f
 hash  | can_multi_col | f
 hash  | can_exclude  | t
(4 rows)
hank=# select p.name, pg_index_has_property('hank.idx_test_name'::regclass,p.name)
hank-# from unnest(array[
hank(#    'clusterable','index_scan','bitmap_scan','backward_scan'
hank(#   ]) p(name);
   name   | pg_index_has_property 
---------------+-----------------------
 clusterable  | f
 index_scan  | t
 bitmap_scan  | t
 backward_scan | t
(4 rows)
hank=# select p.name,
hank-#   pg_index_column_has_property('hank.idx_test_name'::regclass,1,p.name)
hank-# from unnest(array[
hank(#    'asc','desc','nulls_first','nulls_last','orderable','distance_orderable',
hank(#    'returnable','search_array','search_nulls'
hank(#   ]) p(name);
    name    | pg_index_column_has_property 
--------------------+------------------------------
 asc        | f
 desc        | f
 nulls_first    | f
 nulls_last     | f
 orderable     | f
 distance_orderable | f
 returnable     | f
 search_array    | f
 search_nulls    | f
(9 rows)

由于hash函数没有特定的排序规则,所以一般的hash索引只支持等值查询,可以通过下面数据字典看到,所有操作都是“=”,而且hash索引也不会处理null值,所以不会标记null值,还有就是hash索引不存储索引键,只存储hash码,所以不会 index-only扫描,也不支持多列创建hash索引

hank=# select  opf.opfname as opfamily_name,
hank-#     amop.amopopr::regoperator as opfamily_operator
hank-# from   pg_am am,
hank-#     pg_opfamily opf,
hank-#     pg_amop amop
hank-# where  opf.opfmethod = am.oid
hank-# and   amop.amopfamily = opf.oid
hank-# and   am.amname = 'hash'
hank-# order by opfamily_name,
hank-#     opfamily_operator;
  opfamily_name  |           opfamily_operator           
--------------------+------------------------------------------------------------
 abstime_ops    | =(abstime,abstime)
 aclitem_ops    | =(aclitem,aclitem)
 array_ops     | =(anyarray,anyarray)
 bool_ops      | =(boolean,boolean)
 bpchar_ops     | =(character,character)
 bpchar_pattern_ops | =(character,character)
 bytea_ops     | =(bytea,bytea)
 char_ops      | =("char","char")
 cid_ops      | =(cid,cid)
 date_ops      | =(date,date)
 enum_ops      | =(anyenum,anyenum)
 float_ops     | =(real,real)
 float_ops     | =(double precision,double precision)
 float_ops     | =(real,double precision)
 float_ops     | =(double precision,real)
 hash_hstore_ops  | =(hstore,hstore)
 integer_ops    | =(integer,bigint)
 integer_ops    | =(smallint,smallint)
 integer_ops    | =(integer,integer)
 integer_ops    | =(bigint,bigint)
 integer_ops    | =(bigint,integer)
 integer_ops    | =(smallint,integer)
 integer_ops    | =(integer,smallint)
 integer_ops    | =(smallint,bigint)
 integer_ops    | =(bigint,smallint)
 interval_ops    | =(interval,interval)
 jsonb_ops     | =(jsonb,jsonb)
 macaddr8_ops    | =(macaddr8,macaddr8)
 macaddr_ops    | =(macaddr,macaddr)
 name_ops      | =(name,name)
 network_ops    | =(inet,inet)
 numeric_ops    | =(numeric,numeric)
 oid_ops      | =(oid,oid)
 oidvector_ops   | =(oidvector,oidvector)
 pg_lsn_ops     | =(pg_lsn,pg_lsn)
 range_ops     | =(anyrange,anyrange)
 reltime_ops    | =(reltime,reltime)
 text_ops      | =(text,text)
 text_pattern_ops  | =(text,text)
 time_ops      | =(time without time zone,time without time zone)
 timestamp_ops   | =(timestamp without time zone,timestamp without time zone)
 timestamptz_ops  | =(timestamp with time zone,timestamp with time zone)
 timetz_ops     | =(time with time zone,time with time zone)
 uuid_ops      | =(uuid,uuid)
 xid_ops      | =(xid,xid)

从10版本开始,可以通过pageinspect插件查看hash索引的内部情况

安装插件

create extension pageinspect;

查看0号page

hank=# select hash_page_type(get_raw_page('hank.idx_test_name',0));
 hash_page_type 
----------------
 metapage
(1 row)

查看索引中的行数和已用的最大存储桶数

hank=# select ntuples, maxbucket
hank-# from hash_metapage_info(get_raw_page('hank.idx_test_name',0));  
 ntuples | maxbucket 
---------+-----------
  1000 |     3
(1 row)

可以看到1号page是bucket,查看此bucket page的活动元组和死元组的数量,

也就是膨胀度,以便维护索引

hank=# select hash_page_type(get_raw_page('hank.idx_test_name',1));
 hash_page_type 
----------------
 bucket
(1 row)
hank=# select live_items, dead_items
hank-# from hash_page_stats(get_raw_page('hank.idx_test_name',1));  
 live_items | dead_items 
------------+------------
    407 |     0
(1 row) 

以上为个人经验,希望能给大家一个参考,也希望大家多多支持。如有错误或未考虑完全的地方,望不吝赐教。