欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

2017 CCPC 杭州 B题 /hdu 6265 (状态压缩/规律)

程序员文章站 2022-03-30 23:32:07
...

2017 CCPC 杭州 B题 /hdu 6265 (状态压缩/规律)

解法1代码:

//577ms
#include <iostream>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <algorithm>
#include <queue>
#include <stack>
#include <math.h>
#include <algorithm>
#include <map>
#include <vector>
using namespace std;

typedef long long ll;
const int inf = 0x3f3f3f3f;
const int maxn = 1e5 + 10;
const ll mod = 998244353;
ll p[22], q[22], inv[22];
ll sum, ans;
int n;

ll q_pow(ll a, ll b)
{
	ll res = 1;
	while (b) {
		if (b & 1) res = res * a % mod;
		a = a * a % mod;
		b /= 2;
	}
	return res;
}

void dfs(int pos, ll cnt)
{
	if (pos == n) {
		ans = (ans + cnt) % mod;
		return;
	}
	dfs(pos + 1, cnt);
	dfs(pos + 1, cnt * q[pos] % mod * (p[pos] - 1) % mod * inv[pos] % mod);
}

int main(void)
{
#ifdef ACM
	freopen("in.txt", "r", stdin);
	//freopen("out.txt", "w", stdout);
#endif
	int t;
	scanf("%d", &t);
	while (t--) {
		sum = 1;
		ans = 0;
		scanf("%d", &n);
		for (int i = 0; i < n; i++) {
			scanf("%lld%lld", p + i, q + i);
			inv[i] = q_pow(p[i], mod - 2);
			sum = sum * q_pow(p[i], q[i]) % mod;
		}
		dfs(0, sum);
		printf("%lld\n", ans);
	}
	return 0;
}

解法二代码:

//15ms
#include <iostream>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <algorithm>
#include <queue>
#include <stack>
#include <math.h>
#include <algorithm>
#include <map>
#include <vector>
using namespace std;

typedef long long ll;
const int inf = 0x3f3f3f3f;
const int maxn = 1e5 + 10;
const ll mod = 998244353;
ll p[22], q[22], inv[22];
ll sum;

ll q_pow(ll a, ll b)
{
	ll res = 1;
	while (b) {
		if (b & 1) res = res * a % mod;
		a = a * a % mod;
		b /= 2;
	}
	return res;
}


int main(void)
{
#ifdef ACM
	freopen("in.txt", "r", stdin);
	//freopen("out.txt", "w", stdout);
#endif
	int t, m;
	scanf("%d", &t);
	while (t--) {
		sum = 1;
		scanf("%d", &m);
		for (int i = 0; i < m; i++) {
			scanf("%lld%lld", p + i, q + i);
			inv[i] = q_pow(p[i], mod - 2);
			sum = sum * q_pow(p[i], q[i]) % mod;
		}
		for (int i = 0; i < m; i++) {
			sum = sum * (((q[i] * (p[i] - 1) % mod) * inv[i] + 1) % mod) % mod;
		}
		printf("%lld\n", sum % mod);
	}
	return 0;
}


相关标签: 数学 欧拉函数