欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

cf1043F. Make It One(dp 容斥原理)

程序员文章站 2022-03-30 22:37:57
题意 "题目链接" 给出$n$个数,问最少选几个数,使他们的$gcd = 1$ Sol 好神仙啊qwq。 首先,如果答案存在,那么最多为$7$(因为前$7$个质数乘起来$ = 3e5$) 考虑dp,设$f[i][j]$表示选了$i$个数,他们$gcd = j$的方案数! 没错是方案数! 那么我们只要 ......

题意

题目链接

给出\(n\)个数,问最少选几个数,使他们的\(gcd = 1\)

sol

好神仙啊qwq。

首先,如果答案存在,那么最多为\(7\)(因为前\(7\)个质数乘起来\(>= 3e5\))

考虑dp,设\(f[i][j]\)表示选了\(i\)个数,他们\(gcd = j\)的方案数!

没错是方案数!

那么我们只要最后考虑一下\(f[i][1]\)是否有解就行了

\(cnt[i]\)表示有多少个\(a_i\)存在\(i\)这个约数

转移的时候\(f[i][j] = c_{cnt[i]}^i - f[i][j * k], k >= 2\)

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<map>
#include<vector>
#include<set>
#include<queue>
#include<cmath>
#include<tr1/unordered_map> 
//#include<ext/pb_ds/assoc_container.hpp>
//#include<ext/pb_ds/hash_policy.hpp>
#define pair pair<int, int>
#define mp(x, y) make_pair(x, y)
#define fi first
#define se second
//#define int long long
#define ll long long
#define ull unsigned long long
#define rg register
#define pt(x) printf("%d ", x);
//#define getchar() (p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, 1<<22, stdin), p1 == p2) ? eof : *p1++)
//char buf[(1 << 22)], *p1 = buf, *p2 = buf;
//char obuf[1<<24], *o = obuf;
//void print(int x) {if(x > 9) print(x / 10); *o++ = x % 10 + '0';}
//#define os  *o++ = ' ';
using namespace std;
//using namespace __gnu_pbds;
const int maxn = 3e5 + 11, inf = 1e9 + 10, mod = 998244353, mx = 3e5;
const double eps = 1e-9;
inline int read() {
    char c = getchar();
    int x = 0, f = 1;
    while(c < '0' || c > '9') {if(c == '-') f = -1;c = getchar();}
    while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
    return x * f;
}
int n, a[maxn], f[12][maxn], cnt[maxn], fac[maxn], ifac[maxn];
int add(int x, int y) {
    if(x + y < 0) return x + y + mod;
    return x + y >= mod ? x + y - mod : x + y;
}
int mul(int x, int y) {
    return 1ll * x * y % mod;
}
int c(int n, int m) {
    if(n < m) return 0;
    return mul(fac[n], mul(ifac[m], ifac[n - m]));
}
int fp(int a, int p) {
    int base = 1;
    while(p) {
        if(p & 1) base = mul(base, a);
        a = mul(a, a); p >>= 1;
    }
    return base;
}
main() {
    n = read();
    for(int i = 1; i <= n; i++) {
        a[i] = read(), cnt[a[i]]++, f[1][a[i]]++;
        if(a[i] == 1) {puts("1"); return 0;}
    }
    fac[0] = 1; for(int i = 1; i <= n; i++) fac[i] = mul(i, fac[i - 1]);
    ifac[n] = fp(fac[n], mod - 2);
    for(int i = n; i >= 1; i--) ifac[i - 1] = mul(i, ifac[i]); 
    for(int i = 1; i <= mx; i++) 
        for(int j = i + i; j <= mx; j += i) cnt[i] += cnt[j];
    for(int i = 2; i <= 11; i++) {
        for(int j = mx; j >= 1; j--) {
            f[i][j] = c(cnt[j], i);
            for(int k = j + j; k <= mx; k += j) f[i][j] = add(f[i][j], -f[i][k]);
        }
        if(f[i][1] > 0) {printf("%d", i); return 0;}
    }
    puts("-1"); 
    return 0;
}