pytorch实现简单的softmax回归代码
程序员文章站
2022-03-03 14:06:48
...
import torch
from torch import nn
from torch.nn import init
import numpy as np
import sys
from collections import OrderedDict
import d2lzh_pytoch as d2l
import torchvision
import torchvision.transforms as transforms
mnist_train = torchvision.datasets.FashionMNIST(root='/home/xj/Python_lianxi/动手学习深度学习/data/FashionMNIST',train=True,download=True,transform=transforms.ToTensor())
mnist_test = torchvision.datasets.FashionMNIST(root='/home/xj/Python_lianxi/动手学习深度学习/data/FashionMNIST',train=False,download=True,transform=transforms.ToTensor())
#加载数据
def load_data_fashion_mnist(batch_size,mnist_train,mnist_test):
if sys.platform.startswith('win'):
num_worker = 0
else:
num_worker =4
train_iter = torch.utils.data.DataLoader(mnist_train,batch_size=batch_size,shuffle=True,num_workers=num_worker)
test_iter = torch.utils.data.DataLoader(mnist_test,batch_size=batch_size,shuffle=False,num_workers=num_worker)
return train_iter,test_iter
batch_size = 256
# train_iter,test_iter = d2l.load_data_fashion_mnist(batch_size,mnist_train,mnist_test)
train_iter,test_iter = load_data_fashion_mnist(batch_size,mnist_train,mnist_test)
#小批量随机梯度下降算法
def sgd(params,lr,batch_size):
for param in params:
param.data -= lr*param.grad / batch_size
#计算准确率
def evaluate_accuracy(data_iter,net):
acc_sum,n = 0.0,0
for X,y in data_iter:
acc_sum+=(net(X).argmax(dim=1)==y).float().sum().item()
n+=y.shape[0]
return acc_sum/n
num_inputs =784
num_outputs = 10
class LinearNet(nn.Module):
def __init__(self,num_inputs,num_outputs):
super(LinearNet,self).__init__()
self.linear = nn.Linear(num_inputs,num_outputs)
def forward(self,x):
y = self.linear(x.view(x.shape[0],-1))
return y
net = LinearNet(num_inputs,num_outputs)
net = nn.Sequential(
OrderedDict([
('flatten',d2l.FlattenLayer()),
('linear',nn.Linear(num_inputs,num_outputs))
])
)
def train_ch3(net,train_iter,test_iter,loss,num_epochs,batch_size,params=None,lr=None,optimizer=None):
for epoch in range(num_epochs):
train_l_sum,train_acc_sum,n=0.0,0.0,0
for X,y in train_iter:
y_hat = net(X)
l = loss(y_hat,y).sum()
#梯度清零
if optimizer is not None:
optimizer.zero_grad()
elif params is not None and params[0].grad is not None:
for param in params:
param.grad.data.zero_()
l.backward()
if optimizer is None:
sgd(params,lr,batch_size)
else:
optimizer.step()
train_l_sum += l.item()
train_acc_sum += (y_hat.argmax(dim=1)==y).sum().item()
n += y.shape[0]
test_acc = evaluate_accuracy(test_iter,net)
print('ecpoch %d ,loss %.4f,train acc %.3f,test acc %.3f'%(epoch+1,train_l_sum/n,train_acc_sum/n,test_acc))
#使用均值为0,标准差为0.01的正太分布随机初始化模型权重参数
init.normal_(net.linear.weight,mean=0,std=0.01)
init.constant_(net.linear.bias,val=0)
#一个包含softmax运算和交叉熵损失的函数
loss = nn.CrossEntropyLoss()
#使用学习率为0.1的小批量随机梯度下降作为优化算法
optimizer = torch.optim.SGD(net.parameters(),lr=0.05)
#进行训练
num_epochs = 160
# d2l.train_ch3(net,train_iter,test_iter,loss,num_epochs,batch_size,None,None,optimizer)
train_ch3(net,train_iter,test_iter,loss,num_epochs,batch_size,None,None,optimizer)