Python Numpy Tutorials: 数组乘法:点乘和矩阵(数组)乘法
程序员文章站
2022-03-30 15:34:24
# -*- coding: utf-8 -*-
"""
Python Version: 3.5
Created on Thu May 11...
# -*- coding: utf-8 -*- """ Python Version: 3.5 Created on Thu May 11 16:51:20 2017 E-mail: Eric2014_Lv@sjtu.edu.cn @author: DidiLv """ import numpy as np x = np.array([[1,2],[3,4]], dtype=np.float64) y = np.array([[5,6],[7,8]], dtype=np.float64) # Elementwise sum; both produce the array # [[ 6.0 8.0] # [10.0 12.0]] print(x + y) print(np.add(x, y)) # Elementwise difference; both produce the array # [[-4.0 -4.0] # [-4.0 -4.0]] print(x - y) print(np.subtract(x, y)) # Elementwise product; both produce the array # [[ 5.0 12.0] # [21.0 32.0]] print(x * y) # 跟matlab不同都是点乘 print(np.multiply(x, y)) # Elementwise pision; both produce the array # [[ 0.2 0.33333333] # [ 0.42857143 0.5 ]] print(x / y) print(np.pide(x, y)) # Elementwise square root; produces the array # [[ 1. 1.41421356] # [ 1.73205081 2. ]] print(np.sqrt(x)) print('-----------------------------------') # multiply是点乘,dot是矩阵乘法类似matlab里面的乘法 x = np.array([[1,2],[3,4]]) y = np.array([[5,6],[7,8]]) v = np.array([9,10]) w = np.array([11, 12]) # Inner product of vectors; both produce 219 print(v.dot(w)) print(np.dot(v, w)) # Matrix / vector product; both produce the rank 1 array [29 67] print(x.dot(v)) print(np.dot(x, v)) # Matrix / matrix product; both produce the rank 2 array # [[19 22] # [43 50]] print(x.dot(y)) print(np.dot(x, y))