欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  后端开发

Python数据怎么处理numpy.median

程序员文章站 2022-03-30 12:48:32
...
这次给大家带来Python数据怎么处理numpy.median,Python数据处理numpy.median的注意事项有哪些,下面就是实战案例,一起来看一下。

numpy模块下的median作用为:

计算沿指定轴的中位数

返回数组元素的中位数

其函数接口为:

median(a, 
axis=None, 
out=None,
overwrite_input=False, 
keepdims=False)

其中各参数为:

a:输入的数组;

axis:计算哪个轴上的中位数,比如输入是二维数组,那么axis=0对应行,axis=1对应列;

out:用于放置求取中位数后的数组。 它必须具有与预期输出相同的形状和缓冲区长度;

overwrite_input:一个bool型的参数,默认为Flase。如果为True那么将直接在数组内存中计算,这意味着计算之后原数组没办法保存,但是好处在于节省内存资源,Flase则相反;

keepdims:一个bool型的参数,默认为Flase。如果为True那么求取中位数的那个轴将保留在结果中;

>>> a = np.array([[10, 7, 4], [3, 2, 1]])
>>> a
array([[10, 7, 4],
    [ 3, 2, 1]])
>>> np.median(a)
3.5
>>> np.median(a, axis=0)
array([ 6.5, 4.5, 2.5])
>>> np.median(a, axis=1)
array([ 7., 2.])
>>> m = np.median(a, axis=0)
>>> out = np.zeros_like(m)
>>> np.median(a, axis=0, out=m)
array([ 6.5, 4.5, 2.5])
>>> m
array([ 6.5, 4.5, 2.5])
>>> b = a.copy()
>>> np.median(b, axis=1, overwrite_input=True)
array([ 7., 2.])
>>> assert not np.all(a==b)
>>> b = a.copy()
>>> np.median(b, axis=None, overwrite_input=True)
3.5

相信看了本文案例你已经掌握了方法,更多精彩请关注其它相关文章!

推荐阅读:

python怎么逐行读写txt文件

python怎么批量读取txt文件为DataFrame格式

以上就是Python数据怎么处理numpy.median的详细内容,更多请关注其它相关文章!