欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

对numpy中数组元素的统一赋值实例

程序员文章站 2022-03-29 18:33:09
Numpy中的数组整体处理赋值操作一直让我有点迷糊,很多时候理解的不深入。今天单独列写相关的知识点,进行总结一下。 先看两个代码片小例子: 例子1: In [...

Numpy中的数组整体处理赋值操作一直让我有点迷糊,很多时候理解的不深入。今天单独列写相关的知识点,进行总结一下。

先看两个代码片小例子:

例子1:

In [2]: arr =np.empty((8,4))
 
In [3]: arr
Out[3]:
array([[ 0., 0., 0., 0.],
    [ 0., 0., 0., 0.],
    [ 0., 0., 0., 0.],
    [ 0., 0., 0., 0.],
    [ 0., 0., 0., 0.],
    [ 0., 0., 0., 0.],
    [ 0., 0., 0., 0.],
    [ 0., 0., 0., 0.]])
 
In [4]: arr[1] = 1
 
In [5]: arr
Out[5]:
array([[ 0., 0., 0., 0.],
    [ 1., 1., 1., 1.],
    [ 0., 0., 0., 0.],
    [ 0., 0., 0., 0.],
    [ 0., 0., 0., 0.],
    [ 0., 0., 0., 0.],
    [ 0., 0., 0., 0.],
    [ 0., 0., 0., 0.]])

例子2:

In [6]: arr1 =np.empty(2)
In [8]: arr1
Out[8]:array([ 7.74860419e-304,  7.74860419e-304])
 
In [9]: arr1 = 0
 
In [10]: arr1
Out[10]: 0

这两段看上去似乎出现了行为不一致,其实利用一般面向对象的标签理解模型还是能够理解的。

例子1中,加上了索引之后的标签其实指代的就是具体的存储区,而例子2中,直接使用了一个标签而已。那么这样如何实现对一个一维数组的全体赋值呢?其实只需要进行全部元素的索引即可,

具体方法实现如下:

In [11]: arr1 =np.empty(2)
 
In [12]: arr1
Out[12]: array([0., 0.])
 
In [13]: arr1[:]
Out[13]: array([0., 0.])
 
In [14]: arr1[:] =0
 
In [15]: arr1
Out[15]: array([0., 0.])

看起来似乎蛮简单,但是不做一下稍微深入一点的分析,理解起来确实是还有一点点难度。

以上这篇对numpy中数组元素的统一赋值实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。