欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

大学经典教材《数据结构》(C语言版 严蔚敏 吴为民 编著) 中该算法的实现

程序员文章站 2022-03-03 11:34:06
...
/*
测试数据 教科书 P189 G6 的邻接矩阵 其中 数字 1000000 代表无穷大
6
1000000 1000000 10 100000 30 100
1000000 1000000 5 1000000 1000000 1000000
1000000 1000000 1000000 50 1000000 1000000
1000000 1000000 1000000 1000000 1000000 10
1000000 1000000 1000000 20 1000000 60
1000000 1000000 1000000 1000000 1000000 1000000
结果:
D[0]   D[1]   D[2]   D[3]   D[4]   D[5]
 0   1000000   10     50     30     60
*/
#include <iostream>
#include <cstdio>
#define MAX 1000000
using namespace std;
int arcs[10][10];//邻接矩阵
int D[10];//保存最短路径长度
int p[10][10];//路径
int final[10];//若final[i] = 1则说明 顶点vi已在集合S中
int n = 0;//顶点个数
int v0 = 0;//源点
int v,w;
void ShortestPath_DIJ()
{
     for (v = 0; v < n; v++) //循环 初始化
     {
          final[v] = 0; D[v] = arcs[v0][v];
          for (w = 0; w < n; w++) p[v][w] = 0;//设空路径
          if (D[v] < MAX) {p[v][v0] = 1; p[v][v] = 1;}
     }
     D[v0] = 0; final[v0]=0; //初始化 v0顶点属于集合S
     //开始主循环 每次求得v0到某个顶点v的最短路径 并加v到集合S中
     for (int i = 1; i < n; i++)
     {
          int min = MAX;
          for (w = 0; w < n; w++)
          {
               //我认为的核心过程--选点
               if (!final[w]) //如果w顶点在V-S中
               {
                    //这个过程最终选出的点 应该是选出当前V-S中与S有关联边
                    //且权值最小的顶点 书上描述为 当前离V0最近的点
                    if (D[w] < min) {v = w; min = D[w];}
               }
          }
          final[v] = 1; //选出该点后加入到合集S中
          for (w = 0; w < n; w++)//更新当前最短路径和距离
          {
               /*在此循环中 v为当前刚选入集合S中的点
               则以点V为中间点 考察 d0v+dvw 是否小于 D[w] 如果小于 则更新
               比如加进点 3 则若要考察 D[5] 是否要更新 就 判断 d(v0-v3) + d(v3-v5) 的和是否小于D[5]
               */
               if (!final[w] && (min+arcs[v][w]<D[w]))
               {
                    D[w] = min + arcs[v][w];
                   // p[w] = p[v];
                    p[w][w] = 1; //p[w] = p[v] + [w]
               }
          }
     }
}
 
 
int main()
{
    cin >> n;
    for (int i = 0; i < n; i++)
    {
         for (int j = 0; j < n; j++)
         {
              cin >> arcs[i][j];
         }
    }
    ShortestPath_DIJ();
    for (int i = 0; i < n; i++) printf("D[%d] = %d\n",i,D[i]);
    return 0;
}

 

相关标签: acm