欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

图的顺序存储结构及C语言实现

程序员文章站 2022-03-03 11:19:24
...

转自:http://data.biancheng.net/view/202.html

图存储结构可细分两种表现类型,分别为无向图和有向图。

弧头和弧尾
有向图中,无箭头一端的顶点通常被称为"初始点"或"弧尾",箭头直线的顶点被称为"终端点"或"弧头"。

入度和出度
对于有向图中的一个顶点 V 来说,箭头指向 V 的弧的数量为 V 的入度(InDegree,记为 ID(V));箭头远离 V 的弧的数量为 V 的出度(OutDegree,记为OD(V))。拿图 2 中的顶点 V1来说,该顶点的入度为 1,出度为 2(该顶点的度为 3)。

(V1,V2) 和 <V1,V2> 的区别
无向图中描述两顶点(V1 和 V2)之间的关系可以用 (V1,V2) 来表示,而有向图中描述从 V1 到 V2 的"单向"关系用 <V1,V2> 来表示。

由于图存储结构中顶点之间的关系是用线来表示的,因此 (V1,V2) 还可以用来表示无向图中连接 V1 和 V2 的线,又称为边;同样,<V1,V2> 也可用来表示有向图中从 V1 到 V2 带方向的线,又称为弧。

集合 VR 的含义
并且,图中习惯用 VR 表示图中所有顶点之间关系的集合。

路径和回路
无论是无向图还是有向图,从一个顶点到另一顶点途径的所有顶点组成的序列(包含这两个顶点),称为一条路径。如果路径中第一个顶点和最后一个顶点相同,则此路径称为"回路"(或"环")。

并且,若路径中各顶点都不重复,此路径又被称为"简单路径";同样,若回路中的顶点互不重复,此回路被称为"简单回路"(或简单环)。

在有向图中,每条路径或回路都是有方向的。

权和网的含义
在某些实际场景中,图中的每条边(或弧)会赋予一个实数来表示一定的含义,这种与边(或弧)相匹配的实数被称为"权",而带权的图通常称为网。如图 3 所示,就是一个网结构:

子图:指的是由图中一部分顶点和边构成的图,称为原图的子图。

图存储结构的分类

根据不同的特征,图又可分为完全图,连通图、稀疏图和稠密图:

完全图:若图中各个顶点都与除自身外的其他顶点有关系,这样的无向图称为完全图。同时,满足此条件的有向图则称为有向完全图。

具有 n 个顶点的完全图,图中边的数量为 n(n-1)/2;而对于具有 n 个顶点的有向完全图,图中弧的数量为 n(n-1)。

稀疏图和稠密图:这两种图是相对存在的,即如果图中具有很少的边(或弧),此图就称为"稀疏图";反之,则称此图为"稠密图"。

稀疏和稠密的判断条件是:e<nlogn,其中 e 表示图中边(或弧)的数量,n 表示图中顶点的数量。如果式子成立,则为稀疏图;反之为稠密图。

可以说,连通图是在无向图的基础上对图中顶点之间的连通做了更高的要求,而强连通图是在有向图的基础上对图中顶点的连通做了更高的要求。

生成树(生成森林)

生成树
对连通图进行遍历,过程中所经过的边和顶点的组合可看做是一棵普通树,通常称为生成树。

连通图中,由于任意两顶点之间可能含有多条通路,遍历连通图的方式有多种,往往一张连通图可能有多种不同的生成树与之对应。

连通图中的生成树必须满足以下 2 个条件:

  1. 包含连通图中所有的顶点;
  2. 任意两顶点之间有且仅有一条通路;

因此,连通图的生成树具有这样的特征,即生成树中边的数量 = 顶点数 - 1

生成森林
生成树是对应连通图来说,而生成森林是对应非连通图来说的。

非连通图可分解为多个连通分量,而每个连通分量又各自对应多个生成树(至少是 1 棵),因此与整个非连通图相对应的,是由多棵生成树组成的生成森林。因此,多个连通分量对应的多棵生成树就构成了整个非连通图的生成森林。

图的顺序存储结构

使用图结构表示的数据元素之间虽然具有“多对多”的关系,但是同样可以采用顺序存储,也就是使用数组有效地存储图。

使用数组存储图时,需要使用两个数组,一个数组存放图中顶点本身的数据(一维数组),另外一个数组用于存储各顶点之间的关系(二维数组)。

存储图中各顶点本身数据,使用一维数组就足够了;存储顶点之间的关系时,要记录每个顶点和其它所有顶点之间的关系,所以需要使用二维数组。

不同类型的图,存储的方式略有不同,根据图有无权,可以将图划分为两大类:图和网 。

图,包括无向图和有向图;网,是指带权的图,包括无向网和有向网。存储方式的不同,指的是:在使用二维数组存储图中顶点之间的关系时,如果顶点之间存在边或弧,在相应位置 1 表示,反之用 0 表示;如果使用二维数组存储网中顶点之间的关系,顶点之间如果有边或者弧的存在,在数组的相应位置存储其权值;反之用 0 表示。

结构代码表示:

#define MAX_VERtEX_NUM 20                   //顶点的最大个数
#define VRType int                          //表示顶点之间的关系的变量类型
#define InfoType char                       //存储弧或者边额外信息的指针变量类型
#define VertexType int                      //图中顶点的数据类型
typedef enum{DG,DN,UDG,UDN}GraphKind;       //枚举图的 4 种类型
typedef struct {
    VRType adj;                             //对于无权图,用 1 或 0 表示是否相邻;对于带权图,直接为权值。
    InfoType * info;                        //弧或边额外含有的信息指针
}ArcCell,AdjMatrix[MAX_VERtEX_NUM][MAX_VERtEX_NUM];
typedef struct {
    VertexType vexs[MAX_VERtEX_NUM];        //存储图中顶点数据
    AdjMatrix arcs;                         //二维数组,记录顶点之间的关系
    int vexnum,arcnum;                      //记录图的顶点数和弧(边)数
    GraphKind kind;                         //记录图的种类
}MGraph;

具体实现代码:

#include <stdio.h>
#define MAX_VERtEX_NUM 20                   //顶点的最大个数
#define VRType int                          //表示顶点之间的关系的变量类型
#define InfoType char                       //存储弧或者边额外信息的指针变量类型
#define VertexType int                      //图中顶点的数据类型
typedef enum{DG,DN,UDG,UDN}GraphKind;       //枚举图的 4 种类型
typedef struct {
    VRType adj;                             //对于无权图,用 1 或 0 表示是否相邻;对于带权图,直接为权值。
    InfoType * info;                        //弧或边额外含有的信息指针
}ArcCell,AdjMatrix[MAX_VERtEX_NUM][MAX_VERtEX_NUM];

typedef struct {
    VertexType vexs[MAX_VERtEX_NUM];        //存储图中顶点数据
    AdjMatrix arcs;                         //二维数组,记录顶点之间的关系
    int vexnum,arcnum;                      //记录图的顶点数和弧(边)数
    GraphKind kind;                         //记录图的种类
}MGraph;
//根据顶点本身数据,判断出顶点在二维数组中的位置
int LocateVex(MGraph * G,VertexType v){
    int i=0;
    //遍历一维数组,找到变量v
    for (; i<G->vexnum; i++) {
        if (G->vexs[i]==v) {
            break;
        }
    }
    //如果找不到,输出提示语句,返回-1
    if (i>G->vexnum) {
        printf("no such vertex.\n");
        return -1;
    }
    return i;
}
//构造有向图
void CreateDG(MGraph *G){
    //输入图含有的顶点数和弧的个数
    scanf("%d,%d",&(G->vexnum),&(G->arcnum));
    //依次输入顶点本身的数据
    for (int i=0; i<G->vexnum; i++) {
        scanf("%d",&(G->vexs[i]));
    }
    //初始化二维矩阵,全部归0,指针指向NULL
    for (int i=0; i<G->vexnum; i++) {
        for (int j=0; j<G->vexnum; j++) {
            G->arcs[i][j].adj=0;
            G->arcs[i][j].info=NULL;
        }
    }
    //在二维数组中添加弧的数据
    for (int i=0; i<G->arcnum; i++) {
        int v1,v2;
        //输入弧头和弧尾
        scanf("%d,%d",&v1,&v2);
        //确定顶点位置
        int n=LocateVex(G, v1);
        int m=LocateVex(G, v2);
        //排除错误数据
        if (m==-1 ||n==-1) {
            printf("no this vertex\n");
            return;
        }
        //将正确的弧的数据加入二维数组
        G->arcs[n][m].adj=1;
    }
}
//构造无向图
void CreateDN(MGraph *G){
    scanf("%d,%d",&(G->vexnum),&(G->arcnum));
    for (int i=0; i<G->vexnum; i++) {
        scanf("%d",&(G->vexs[i]));
    }
    for (int i=0; i<G->vexnum; i++) {
        for (int j=0; j<G->vexnum; j++) {
            G->arcs[i][j].adj=0;
            G->arcs[i][j].info=NULL;
        }
    }
    for (int i=0; i<G->arcnum; i++) {
        int v1,v2;
        scanf("%d,%d",&v1,&v2);
        int n=LocateVex(G, v1);
        int m=LocateVex(G, v2);
        if (m==-1 ||n==-1) {
            printf("no this vertex\n");
            return;
        }
        G->arcs[n][m].adj=1;
        G->arcs[m][n].adj=1;//无向图的二阶矩阵沿主对角线对称
    }
}
//构造有向网,和有向图不同的是二阶矩阵中存储的是权值。
void CreateUDG(MGraph *G){
    scanf("%d,%d",&(G->vexnum),&(G->arcnum));
    for (int i=0; i<G->vexnum; i++) {
        scanf("%d",&(G->vexs[i]));
    }
    for (int i=0; i<G->vexnum; i++) {
        for (int j=0; j<G->vexnum; j++) {
            G->arcs[i][j].adj=0;
            G->arcs[i][j].info=NULL;
        }
    }
    for (int i=0; i<G->arcnum; i++) {
        int v1,v2,w;
        scanf("%d,%d,%d",&v1,&v2,&w);
        int n=LocateVex(G, v1);
        int m=LocateVex(G, v2);
        if (m==-1 ||n==-1) {
            printf("no this vertex\n");
            return;
        }
        G->arcs[n][m].adj=w;
    }
}
//构造无向网。和无向图唯一的区别就是二阶矩阵中存储的是权值
void CreateUDN(MGraph* G){
    scanf("%d,%d",&(G->vexnum),&(G->arcnum));
    for (int i=0; i<G->vexnum; i++) {
        scanf("%d",&(G->vexs[i]));
    }
    for (int i=0; i<G->vexnum; i++) {
        for (int j=0; j<G->vexnum; j++) {
            G->arcs[i][j].adj=0;
            G->arcs[i][j].info=NULL;
        }
    }
    for (int i=0; i<G->arcnum; i++) {
        int v1,v2,w;
        scanf("%d,%d,%d",&v1,&v2,&w);
        int m=LocateVex(G, v1);
        int n=LocateVex(G, v2);
        if (m==-1 ||n==-1) {
            printf("no this vertex\n");
            return;
        }
        G->arcs[n][m].adj=w;
        G->arcs[m][n].adj=w;//矩阵对称
    }
}
void CreateGraph(MGraph *G){
    //选择图的类型
    scanf("%d",&(G->kind));
    //根据所选类型,调用不同的函数实现构造图的功能
    switch (G->kind) {
        case DG:
            return CreateDG(G);
            break;
        case DN:
            return CreateDN(G);
            break;
        case UDG:
            return CreateUDG(G);
            break;
        case UDN:
            return CreateUDN(G);
            break;
        default:
            break;
    }
}
//输出函数
void PrintGrapth(MGraph G)
{
    for (int i = 0; i < G.vexnum; i++)
    {
        for (int j = 0; j < G.vexnum; j++)
        {
            printf("%d ", G.arcs[i][j].adj);
        }
        printf("\n");
    }
}
int main() {
    MGraph G;//建立一个图的变量
    CreateGraph(&G);//调用创建函数,传入地址参数
    PrintGrapth(G);//输出图的二阶矩阵
    return 0;
}
相关标签: