JavaScript实现选择排序算法的实例分析(图)
本文实例讲述了JavaScript实现的选择排序算法。分享给大家供大家参考,具体如下:
简单选择排序是人们最熟悉的比较方式,其算法思想为:从数组的开头开始,将第一个元素和其他元素进行比较。检查完所有元素后,最小的元素会被放到数组的第一个位置,然后算法会从第二个位置继续。这个过程会一直进行,当进行到数组的倒数第二个位置时,所有的数据便完成了排序。
代码如下:
<!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title>JavaScript选择排序</title> </head> <body> <script type="text/javascript"> function selectSort(nums){//选择排序 var min;//最小值 for(var outer=0;outer<nums.length-1;outer++){//外循环选中元素 min=outer; for(var inner=outer+1;inner<=nums.length;++inner){ if(nums[inner]<nums[min]){//如果内循环中元素比选中元素小 min=inner;//将其标为最小元素 }//直到每次外循环的最小元素 swap(nums,outer,min);//最小值被调整到合适的位置 } } } function swap(arr,i,j){//交换位置 var temp=arr[i]; arr[i]=arr[j]; arr[j]=temp; } function show(nums){//显示数组 for(var i=0;i<nums.length;i++){ document.write(nums[i]+' '); } document.write('<br>'); } var nums=[6,8,0,6,7,4,3,5,5,10]; show(nums);//6 8 0 6 7 4 3 5 5 10 selectSort(nums); show(nums);//0 3 4 5 5 6 6 7 9 10 </script> </body> </html>
分析可得,简单选择排序的时间复杂度为O(n2)。选择排序的主要操作是进行关键字之间的比较,因此改进简单选择排序应该从如何减少比较出发。其实现实生活中就有一个很好的例子,就是比赛总的锦标赛。8个人中选出冠军其实不需要7+6+5=18场比赛,可以通过两两比较也就是11场比赛。这种方法叫做树形选择排序。
树形选择排序是一种按照锦标赛的思想进行选择排序的方法,首先对n个记录的关键字进行两两比较,然后在其中n/2个较小者之间再进行两两比较,直到找出最小关键字。可以通过一个完全二叉树来表示,由于含有n个结点的完全二叉树的深度为log2n+1,所以排序过程中每选择一个次小关键字仅需要log2n次操作,所以其时间复杂度O(nlog2n),但是这种排序有一种缺点就是占用空间大。
所以我们需要介绍一种更加优秀的排序,也就是堆排序。
附:堆排序算法
堆排序只需要一个记录大小的辅助空间,每个待排序的记录仅占用一个存储空间。
堆排序利用了大根堆(或小根堆)堆顶记录的关键字最大(或最小)这一特征,使得当前无序区中选取最大(或最小)关键字的记录变得简单。我们以大跟堆为例子,排序的基本操作如下:
首先是建堆,建堆就是不断调整堆的过程,从len2处开始调整,一直到第一个节点,此处len是堆中元素的个数。建堆的过程是线性的过程,从len2到0处一直调用调整堆的过程,建堆的时间复杂度为O(n)。
接下来是调整堆,调整堆在建堆和堆排序的过程中都会用到,利用的思想是比较节点i和它的孩子节点left(i)和right(i),选出三者最大(或最小)者,如果最大(小)值不是节点i而是它的一个子节点,那么交换两个节点,然后继续递归。
然后是堆排序:将堆的根节点取出,最后一个元素替换根节点,将前面len-1个节点继续进行堆调整的过程,然后再讲根节点取出,直到所有结点取出。调整堆的时间复杂度为O(log2n)
所以堆排序的时间复杂度为O(nlog2n)。堆排序是就地排序,其辅助空间为O(1)。但是它不稳定,(排序的稳定性是指如果在排序的序列中,存在前后相同的两个元素的话,排序前 和排序后他们的相对位置不发生变化)。
下面模拟建堆的过程:
堆排序对于记录数较少的文件并不值得提倡,但是对于n较大的文件还是挺有效的。
以上就是JavaScript实现选择排序算法的实例分析(图)的详细内容,更多请关注其它相关文章!
上一篇: html5实现分层屏幕适配