欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

codechef Count Relations(组合数 二项式定理)

程序员文章站 2022-03-28 19:09:12
题意 求有多少元素属于$1 \sim N$的集合满足 R1 = {(x,y):x和y属于B,x不是y的子集,y不是x的子集,x和y的交集等于空集} R2 = {(x,y):x和y属于B,x不是y的子集,y不是x的子集,x和y的交集不等于空集} Sol 神仙题啊Orz 我整整推了两个小时才推出来 首先 ......

题意

求有多少元素属于$1 \sim n$的集合满足

r1 = {(x,y):x和y属于b,x不是y的子集,y不是x的子集,x和y的交集等于空集}

r2 = {(x,y):x和y属于b,x不是y的子集,y不是x的子集,x和y的交集不等于空集}

sol

神仙题啊orz

我整整推了两个小时才推出来

首先写暴力

codechef Count Relations(组合数 二项式定理)
/*
*/
#include<iostream>
#include<cstdio>
#include<cstring>
//#define int long long 
#define ll int
const int maxn = 1001;
using namespace std;
inline int read() {
    char c = getchar(); int x = 0, f = 1;
    while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
    while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
    return x * f;
}
int n;
int c[maxn][maxn], po2[maxn];
main() {
    cin >> n;
    po2[0] = 1;
    for(int i = 1; i <= 1000; i++) po2[i] = 2 * po2[i - 1];
    c[0][0] = 1;
    for(int i = 1; i <= 1000; i++) {
        c[i][0] = 1;
        for(int j = 1; j <= i; j++)
            c[i][j] = c[i - 1][j - 1] + c[i - 1][j]; 
    }
    int ans = 0;
    for(int i = 1; i <= n - 1; i++) {
        int now = c[n][i], sum = 0;
        for(int j = 1; j <= n - i; j++)    sum += c[n - i][j];
        //ans += now * sum;
        ans += now * (po2[n - i] - 1);
    }
    cout << ans / 2 << " ";
    ans = 0;
    for(int i = 2; i <= n - 1; i++) {
        int res1 = c[n][i], sum1 = 0;
        for(int j = 1; j <= i - 1; j++) {
            int res2 = c[i][j], sum2 = 0;
            for(int k = 1; k <= n - i; k++) {
                sum2 += c[n - i][k];
            }
            sum1 += res2 * sum2;
        }
        ans += res1 * sum1;
    }
    cout << ans / 2;
    return 0;
}
/*
100 50 10000006
*/
暴力

然后一层一层展开即可

最后的答案为

第一问:

$$\frac{3^n + 1}{2} - 2^n$$'

第二问:

$$\frac{-3 * 3^n + 4^n - 1}{2} + 3 * 2^{n - 1}$$

/*
*/
#include<iostream>
#include<cstdio>
#include<cstring>
#define int long long 
#define ll int
const int maxn = 1001, mod = 100000007, inv = 50000004;
using namespace std;
inline int read() {
    char c = getchar(); int x = 0, f = 1;
    while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
    while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
    return x * f;
}
int n;
int c[maxn][maxn], po2[maxn], po3[maxn], po4[maxn];
int f(int a, int p) {
    int base = 1;
    while(p) {
        if(p & 1) base = (base * a) % mod;
        a = (a * a) % mod; p >>= 1;
    }
    return base % mod;
}
main() {
    int t;
    cin >> t;
    while(t--) {
        cin >> n;
        /*po2[0] = po3[0] = po4[0] = 1; 
        for(int i = 1; i <= 1000; i++) po2[i] = 2 * po2[i - 1], po3[i] = 3 * po3[i - 1], po4[i] = 4 * po4[i - 1];
        int ans = (po3[n] + 1) / 2 - po2[n];
        cout << ans << " ";
        ans = 0;
        ans = (-3 * po3[n] + po4[n] - 1) / 2;
        ans += po2[n - 1] * 3;
        cout << ans;    */
        //cout << f(2, mod - 2) % mod;
        int ans = ((f(3, n) + 1) * inv - f(2, n) + mod) % mod;
        cout << ans << " ";
        ans = ((-3 * f(3, n) + mod) % mod + f(4, n) - 1 + mod) * inv + f(2, n - 1) * 3 % mod;
        ans %= mod;
        cout << ans << endl;
    }

    return 0;
}
/*
*/