欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  数据库

MySQL— pymysql and SQLAlchemy

程序员文章站 2022-03-27 22:23:24
...

目录

一、pymysql

二、SQLAlchemy

一、pymysql

pymsql是Python中操作MySQL的模块,其使用方法和MySQLdb几乎相同。

1. 下载安装

#在终端直接运行
pip3 install pymysql

2. 使用操作

a. 执行SQL

#!/usr/bin/env python# -*- coding:utf-8 -*-import pymysql
  # 创建连接conn = pymysql.connect(host='127.0.0.1', port=3306, user='root', passwd='123', db='t1')# 创建游标cursor = conn.cursor()
  # 执行SQL,并返回受影响行数effect_row = cursor.execute("update hosts set host = '1.1.1.2'")
  # 执行SQL,并返回受影响行数#effect_row = cursor.execute("update hosts set host = '1.1.1.2' where nid > %s", (1,))  # 执行SQL,并返回受影响行数#effect_row = cursor.executemany("insert into hosts(host,color_id)values(%s,%s)", [("1.1.1.11",1),("1.1.1.11",2)])  
  # 提交,不然无法保存新建或者修改的数据conn.commit()
  # 关闭游标cursor.close()# 关闭连接conn.close()

b. 获取新创建数据自增ID

#!/usr/bin/env python# -*- coding:utf-8 -*-import pymysql
  
conn = pymysql.connect(host='127.0.0.1', port=3306, user='root', passwd='123', db='t1')
cursor = conn.cursor()
cursor.executemany("insert into hosts(host,color_id)values(%s,%s)", [("1.1.1.11",1),("1.1.1.11",2)])
conn.commit()# 获取最新自增IDnew_id = cursor.lastrowid

cursor.close()
conn.close()

c. 获取查询数据

#!/usr/bin/env python# -*- coding:utf-8 -*-import pymysql
  
conn = pymysql.connect(host='127.0.0.1', port=3306, user='root', passwd='123', db='t1')
cursor = conn.cursor()
cursor.execute("select * from hosts")
  # 获取第一行数据row_1 = cursor.fetchone()
  # 获取前n行数据# row_2 = cursor.fetchmany(3)# 获取所有数据# row_3 = cursor.fetchall()  
conn.commit()
cursor.close()
conn.close()

注:在fetch数据时按照顺序进行,可以使用cursor.scroll(num,mode)来移动游标位置,如:

  • cursor.scroll(1,mode='relative')    # 相对当前位置移动

  • cursor.scroll(2,mode='absolute')   # 相对绝对位置移动

d. fetch数据类型

关于默认获取的数据是元组类型,如果想要获得字典类型的数据,即:

#!/usr/bin/env python# -*- coding:utf-8 -*-import pymysql
  
conn = pymysql.connect(host='127.0.0.1', port=3306, user='root', passwd='123', db='t1')
  # 游标设置为字典类型cursor = conn.cursor(cursor=pymysql.cursors.DictCursor)
r = cursor.execute("call p1()")
  
result = cursor.fetchone()
  
conn.commit()
cursor.close()
conn.close()

二、SQLAlchemy

SQLAlchemy是Python编程语言下的一款ORM框架,该框架建立在数据库API之上,使用关系对象映射进行数据库操作,简言之便是:将对象转换成SQL,然后使用数据API执行SQL并获取执行结果。

1. 下载安装

#在终端直接运行pip3 install SQLAlchemy

2. SQLAlchemy依赖关系

SQLAlchemy本身无法操作数据库,其必须依赖pymsql等第三方插件,Dialect用于和数据API进行交流,根据配置文件的不同调用不同的数据库API,从而实现对数据库的操作。
MySQL— pymysql and SQLAlchemy

MySQL-Python
    mysql+mysqldb://<user>:<password>@<host>[:<port>]/<dbname>   
pymysql
    mysql+pymysql://<username>:<password>@<host>/<dbname>[?<options>]
   
MySQL-Connector
    mysql+mysqlconnector://<user>:<password>@<host>[:<port>]/<dbname>   
cx_Oracle
    oracle+cx_oracle://user:pass@host:port/dbname[?key=value&key=value...]
更多详见:index.html

3. ORM功能使用

使用 ORM/Schema Type/SQL Expression Language/Engine/ConnectionPooling/Dialect 所有组件对数据进行操作。根据类创建对象,对象转换成SQL,执行SQL。
a. 创建表
#!/usr/bin/env python# -*- coding:utf-8 -*-from sqlalchemy.ext.declarative import declarative_basefrom sqlalchemy import Column, Integer, String, ForeignKey, UniqueConstraint, Indexfrom sqlalchemy.orm import sessionmaker, relationshipfrom sqlalchemy import create_engine#表明依赖关系并创建连接,最大连接数为5 engine = create_engine("mysql+pymysql://root:123@127.0.0.1:3306/t1", max_overflow=5)
 
Base = declarative_base()
 # 创建单表class Users(Base):
    __tablename__ = 'users'    # 表名    id = Column(Integer, primary_key=True,autoincrement=True)    # id列,主键自增    name = Column(String(32))    # name列    extra = Column(String(16))    # extra列 
    __table_args__ = (
    UniqueConstraint('id', 'name', name='uix_id_name'),    # 创建联合唯一索引        Index('ix_id_name', 'name', 'extra'),    # 创建普通索引    )
 
 # 一对多class Favor(Base):
    __tablename__ = 'favor'    nid = Column(Integer, primary_key=True)
    caption = Column(String(50), default='red', unique=True)
 
 class Person(Base):
    __tablename__ = 'person'    nid = Column(Integer, primary_key=True)
    name = Column(String(32), index=True, nullable=True)
    favor_id = Column(Integer, ForeignKey("favor.nid"))    # 创建外键 
 # 多对多class Group(Base):
    __tablename__ = 'group'    id = Column(Integer, primary_key=True)
    name = Column(String(64), unique=True, nullable=False)
    port = Column(Integer, default=22)
 
 class Server(Base):
    __tablename__ = 'server'    id = Column(Integer, primary_key=True, autoincrement=True)
    hostname = Column(String(64), unique=True, nullable=False)
 
 class ServerToGroup(Base):
    __tablename__ = 'servertogroup'    nid = Column(Integer, primary_key=True, autoincrement=True)
    server_id = Column(Integer, ForeignKey('server.id'))    # 创建外键    group_id = Column(Integer, ForeignKey('group.id'))    # 创建外键 
 def init_db():
    Base.metadata.create_all(engine)
 
 def drop_db():
    Base.metadata.drop_all(engine)

注:设置外键的另一种方式 ForeignKeyConstraint(['other_id'], ['othertable.other_id'])

b. 操作表
MySQL— pymysql and SQLAlchemyMySQL— pymysql and SQLAlchemy
#!/usr/bin/env python# -*- coding:utf-8 -*-from sqlalchemy.ext.declarative import declarative_basefrom sqlalchemy import Column, Integer, String, ForeignKey, UniqueConstraint, Indexfrom sqlalchemy.orm import sessionmaker, relationshipfrom sqlalchemy import create_engine

engine = create_engine("mysql+pymysql://root:123@127.0.0.1:3306/t1", max_overflow=5)

Base = declarative_base()# 创建单表class Users(Base):__tablename__ = 'users'id = Column(Integer, primary_key=True)
    name = Column(String(32))
    extra = Column(String(16))__table_args__ = (
    UniqueConstraint('id', 'name', name='uix_id_name'),
        Index('ix_id_name', 'name', 'extra'),
    )def __repr__(self):return "%s-%s" %(self.id, self.name)# 一对多class Favor(Base):__tablename__ = 'favor'nid = Column(Integer, primary_key=True)
    caption = Column(String(50), default='red', unique=True)def __repr__(self):return "%s-%s" %(self.nid, self.caption)class Person(Base):__tablename__ = 'person'nid = Column(Integer, primary_key=True)
    name = Column(String(32), index=True, nullable=True)
    favor_id = Column(Integer, ForeignKey("favor.nid"))# 与生成表结构无关,仅用于查询方便favor = relationship("Favor", backref='pers')# 多对多class ServerToGroup(Base):__tablename__ = 'servertogroup'nid = Column(Integer, primary_key=True, autoincrement=True)
    server_id = Column(Integer, ForeignKey('server.id'))
    group_id = Column(Integer, ForeignKey('group.id'))
    group = relationship("Group", backref='s2g')
    server = relationship("Server", backref='s2g')class Group(Base):__tablename__ = 'group'id = Column(Integer, primary_key=True)
    name = Column(String(64), unique=True, nullable=False)
    port = Column(Integer, default=22)# group = relationship('Group',secondary=ServerToGroup,backref='host_list')class Server(Base):__tablename__ = 'server'id = Column(Integer, primary_key=True, autoincrement=True)
    hostname = Column(String(64), unique=True, nullable=False)def init_db():
    Base.metadata.create_all(engine)def drop_db():
    Base.metadata.drop_all(engine)

Session = sessionmaker(bind=engine)
session = Session()
表结构 + 数据库连接

b.1 增

#单条增加obj = Users(name="alex0", extra='sb')
session.add(obj)#多条增加session.add_all([
    Users(name="alex1", extra='sb'),
    Users(name="alex2", extra='sb'),
])#提交session.commit()

b.2 删

#先查询到要删除的记录,再deletesession.query(Users).filter(Users.id > 2).delete()
session.commit()

b.3 改

#先查询,再更新session.query(Users).filter(Users.id > 2).update({"name" : "099"})    # 直接更改session.query(Users).filter(Users.id > 2).update({Users.name: Users.name + "099"}, synchronize_session=False)    # 字符串拼接session.query(Users).filter(Users.id > 2).update({"num": Users.num + 1}, synchronize_session="evaluate")    # 数字相加session.commit()

b.4 查

ret = session.query(Users).all()
ret = session.query(Users.name, Users.extra).all()
ret = session.query(Users).filter_by(name='alex').all()
ret = session.query(Users).filter_by(name='alex').first()

ret = session.query(Users).filter(text("id<:value and name=:name")).params(value=224, name='fred').order_by(User.id).all()

ret = session.query(Users).from_statement(text("SELECT * FROM users where name=:name")).params(name='ed').all()

b.5 其它

# 条件ret = session.query(Users).filter_by(name='alex').all()    # 条件内为关键字表达式ret = session.query(Users).filter(Users.id > 1, Users.name == 'eric').all()    # 条件内为SQL表达式ret = session.query(Users).filter(Users.id.between(1, 3), Users.name == 'eric').all()    # betweenret = session.query(Users).filter(Users.id.in_([1,3,4])).all()    # inret = session.query(Users).filter(~Users.id.in_([1,3,4])).all()    # not inret = session.query(Users).filter(Users.id.in_(session.query(Users.id).filter_by(name='eric'))).all()    # 子查询条件from sqlalchemy import and_, or_
ret = session.query(Users).filter(and_(Users.id > 3, Users.name == 'eric')).all()    # andret = session.query(Users).filter(or_(Users.id < 2, Users.name == 'eric')).all()    # orret = session.query(Users).filter(
    or_(
        Users.id < 2,
        and_(Users.name == 'eric', Users.id > 3),
        Users.extra != "")).all()# 通配符ret = session.query(Users).filter(Users.name.like('e%')).all()    # e开头ret = session.query(Users).filter(~Users.name.like('e%')).all()    # 非e开头# 限制ret = session.query(Users)[1:2]    # 相当于limit# 排序ret = session.query(Users).order_by(Users.name.desc()).all()
ret = session.query(Users).order_by(Users.name.desc(), Users.id.asc()).all()# 分组from sqlalchemy.sql import func

ret = session.query(Users).group_by(Users.extra).all()
ret = session.query(
    func.max(Users.id),
    func.sum(Users.id),
    func.min(Users.id)).group_by(Users.name).all()

ret = session.query(
    func.max(Users.id),
    func.sum(Users.id),
    func.min(Users.id)).group_by(Users.name).having(func.min(Users.id) >2).all()# 连表ret = session.query(Users, Favor).filter(Users.id == Favor.nid).all()    # 笛卡儿积连表ret = session.query(Person).join(Favor).all()    # 默认内连 inner joinret = session.query(Person).join(Favor, isouter=True).all()    # 左连# 组合q1 = session.query(Users.name).filter(Users.id > 2)
q2 = session.query(Favor.caption).filter(Favor.nid < 2)
ret = q1.union(q2).all()

q1 = session.query(Users.name).filter(Users.id > 2)
q2 = session.query(Favor.caption).filter(Favor.nid < 2)
ret = q1.union_all(q2).all()

参考资料:

1. Python开发【第十九篇】:Python操作MySQL

以上就是MySQL— pymysql and SQLAlchemy的详细内容,更多请关注其它相关文章!