欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  科技

物联网为什么需要5G?

程序员文章站 2022-03-27 21:48:39
摘要:5G,这个词,我想每个接触ICT行业的朋友都有听过,可5G的到来,对物联网行业的帮助究竟是什么?我相信,95%的ICT从业者对5G这一概念没有一个清晰的认知。这一期文章的主题主要是普及一些5G关键技术的介绍。一、移动通信概述1.移动通信发展历程1G 模拟制式语音业务NMT TACS AMPS NAMTS2G 数字制式 语音业务 低速数据业务10kbps~200kbps GSM CDMA3G 移动多媒体业务 2Mbps~50Mbps TD-SCDMA WCDMA CDMA20...
摘要:5G,这个词,我想每个接触ICT行业的朋友都有听过,可5G的到来,对物联网行业的帮助究竟是什么?

我相信,95%的ICT从业者对5G这一概念没有一个清晰的认知。

这一期文章的主题主要是普及一些5G关键技术的介绍。

一、移动通信概述

1.移动通信发展历程

1G 模拟制式语音业务NMT TACS AMPS NAMTS

2G 数字制式 语音业务 低速数据业务10kbps~200kbps GSM CDMA

3G 移动多媒体业务 2Mbps~50Mbps TD-SCDMA WCDMA CDMA2000

4G 移动宽带 100Mbps~1Gbps TD-LTE FDD LTE

5G 万物互联

2.4G和5G的“野心”

A.4G设计目标

三高

高峰值速率:下行峰值100Mbps,上行峰值50Mbps

高频谱效率:频谱效率是3G的3~5倍

高移动:支持350km/h(在某些频段甚至支持500km/h

两低

低时延:控制面IDLE-> ACTIVE:<100ms,用户面传输:<10ms

低成本:SON(自组织网络),支持多频段灵活配置

一架构

以分组域业务为主要目标,系统在整体架构上是基于分组交换的扁平化架构

B.5G设计目标

聚焦多元化需求:eMBB+uRLLC+eMTC

用户体验速率

频谱效率

移动性

时延

连接数密(设备/平方公里)

网络功耗效率

区域流量能力

峰值速率

3.实现“野心”的关键

频谱资源

频谱资源变化:更大带宽、更高利用率

频谱资源: 4G 20MHz 5G 400MHz

传输带宽: 4G保护带宽占比约10%频谱利用率约90% 5G 保护带宽占比2%~3% 频谱利用率约98%

系统架构

系统架构演进:传统网络至4G

系统架构演进:5G NFV(网络设备功能虚拟化)

关键技术

4G VS 5G

双工方式:TDD/ FDD——灵活双工、全双工

多址技术:OFDMA/SC-OFDMA——OFDMA/SC-FDMA/NOMA

天线技术:传统MIMO——Massive MIMO

调制方式:64QAM——1024QAM

4.5G前景展望

使能更多新兴垂直行业应用!

案例 智能电网:监控和控制 故障自恢复 时延要求5~50ms 可靠性要求 非常高

无人机:公共安全 农林 时延要求10~30ms 可靠性要求 高

智能医疗:远程手术 时延要求10~100ms 可靠性要求 高

智能制造:机器人通信与控制 时延要求 10~100ms 可靠性要求非常高

······

二、5G网络概述

1.移动业务需求趋势及业务场景

A.5G时代面临的挑战

MBB数据流量雪崩式增长 移动互联网等新应用所带来的流量爆炸性增长 10年1000倍

联网设备数量巨大增长 具备通信能力的机器 2020年有1000亿联网设备

应用场景和需求的多样性 设备与设备之间的通信 比如车与车之间的通信 由于机器通信所带来新需求和新特性

高速率=良好的用户体验

流媒体VR视频的带宽需求

物联网通信技术——5G

B.不同制式所支持连接数

3G每小区支持100个连接

4G每小区支持1000个连接

5G每平方公里支持1百万个连接

有了5G,十字路口不再拥塞

自动驾驶对低时延的需求

C.5G的关键性能指标

时延 1毫秒 端到端时延 30~50x

吞吐量 10Gbps每个连接速率

连接数 1000K每平方公里连接数

D.5G法定名称“ IMT-2020 ”

ITU对IMT2020愿景的描述

eMBB(增强型MBB)10Gbit/s

mMTC(海量连接的物联网业务)1百万连接每平方公里

uRLLC (超高可靠性与超低时延业务)1ms

NGMN对5G愿景的描述

5G是一个端到端、全移动的、全连接的生态系统,提供全覆盖的一致性体验,提供可持续的商用模型,通过现有的和即将涌现的创新,为用户和合作伙伴创造价值

增强的宽带接入eMBB

虚拟现实VR 增强现实AR 3D全息

大规模的物联网(mMTC)

Huawei&ofo共享单车应用案例

根据华为预计,到2017年底,全球将有30张NB-IoT商用网络

智慧城市

智慧T-mobile “智能暖气表”NB-IoT应用案例

极致的实时通信

触觉互联网

自动化交通控制和驾驶

5G关键的能力

5G=平台

5G网络新架构

超高清分片

语音分片

实时业务分片

IoT业务分片

产业需求定义分片的QoS

基站

NFV(统一控制平面)+SDN(多业务的用户平面 )

Telco-OS

开发者

消费者

合作伙伴

运营商

5G对未来的定义

5G=10Gbps + 1ms时延 +100万连接/每平方公里

2.5G协议标准化及当前进展

5G从3GPP Release15开始

5G包括:新空口 LTE Advanced Pro演进

下一代核心网NextGen Core

EPC演进

研究5G的主要国际标准组织

ITU-R Visions Group

EU

Germany-5G Lab Germany at TU Dresden

UK-5G Innovation Centre(5GIC)at University of Surrey

US

Intel Strategic Research Alliance (ISRA)

China

Japan

Korea

研究5G的主要国际非标准组织

OTSA

3GPP

3.5G全球商用计划

家庭宽带最后一公里接入

车联网正在成为国家的战略关注点

未来将持续探索新兴垂直行业应用

今天的长尾将是明天的主体 如AR/MR(长尾效应)

三、5G网络关键技术

1.增强覆盖技术

5G网络频谱

增加带宽是增加容量和传输速率最直接的方法,5G最大带宽将会达到1GHz,考虑到目前频率占用情况,5G将不得不使用高频进行通信

a.5G主频段 以3.5GHz为主

b.5G扩展频段毫米波 以28/39/60/73GHz

高频通信的挑战

高频波长相比低频传播损耗更大、绕射能力更弱

频段越高,上下行覆盖差异越明显,上行覆盖受限

高频通信的解决方案-提高发射功率

高频通信的解决方案-上下行解耦 NR中基站下行使用高频段进行通信,上行可以视UE覆盖情况选择与LTE共享低频资源进行通信,从而实现NR上下行频段解耦

UE基于覆盖情况选择合适的上行频点

IDLE态通过系统消息获取f1,f2相关信息,并根据实际测量进行选择

连接态通过测量报告上报,由基站通过信令指示

上下行解耦要求5G NR和LTE协同

上下行解耦站形

BBU5900

a.设备紧凑,连接简单

b.新建站点或改造eNB

c.适合有较多空闲槽位场景

槽位多,可扩展性好 需要两根光纤,成本高

a.BBU3910

b.BBU5900

槽位多,可扩展性好 增加框间基带板HEI接口,接口流量大

a.BBU3910

b.BBU5900

2.提高效率技术

A.NR频谱效率提升技术

频谱效率即单位时间内每Hz中bit数的提升,5G中用的频谱效率提升方法包括:

a.新波形技术、新多址技术

NR无线新波形(华为FOFDM)

Filtered-OFDM是一项基础波形技术,与OFDM最大的区别就是子载波带宽可以根据需求进行调整,以适应不同业务的需求

4G(OFDM):子载波带宽是固定的,15kHz 固定子载波间隔 10%保护带宽

5G(F-OFDM):子载波带宽是不固定的,可以灵活真的不同QoE应用的报文大小 灵活子载波间隔(方便空口做网络切片) 1个子载波的最小保护带宽

b.NR上行新波形(CP-OFDM)

NR上行支持两种波形,CP-OFDM和DFT-S-OFDM,使用CP-OFDM时,基站可以不用为UE分配频域连续的子载波

c.NR新多址技术(华为SCMA)

1G:FDMA

2G:TDMA+FDMA

3G:CDMA

4G:OFDMA

5G:SCMA 新型多址接入技术

通过使用扩频技术在4个子载波上承载6个用户的数据,提升频谱的使用效率
B.新调制技术、新编码技术

a.新调制技术(256QAM)

3GPP R12协议中新增了下行256QAM,相对于64QAM支持每符号携带8个bit位,支持更大的TBDS传输,理论峰值频谱效率提升33%。相同频谱效率下256QAM码率更低,解调可靠性更高

b.NR新编码技术(Polar+LDPC)

LDPC Code(业务信道)

LTE Turbo

NR LDPC

Polar Code(控制信道)

Polar码高可靠的编码方式无误码平台从而减少重传,同时降低信噪比需求以提升覆盖

C.灵活双工与全双工

a.灵活双工技术

根据业务调整上下行子帧

相邻小区会进行干扰协调消除

b.全双工技术

目前TDD/FDD制式是分别在不同的时间/频率资源上分别进行收发

全双工将指收发双方在同一时频资源进行数传

发送端和接收端同时收发,发送端把信息传递给接收端,接收端进行相关干扰消除运算,实现同时收发

D.Massive MIMO

水平的4流加BF 8T8RVS 64T64R

立体16流更窄的波束+MU BF

E.Massive MIMO增益(上行MU-MIMO)

多用户虚拟MIMO

通过多个UE配对复用相同的上行时频资源,同时传输多流数据,从而提高小区的平均下行吞吐率

F.Massive MIMO增益(3D BF)

三维波束赋形简称3D BF,增强用户的覆盖

相对于传统波束只能在水平方向跟随目标UE调整方向,3D BF的窄波束在水平方向和垂直方向都能随着目标UE的位置进行调整

G.Massive MIMO增益(MU BF)

多用户虚拟BF

eNOdeB根据配对条件进行UE配对,实现在同一时频资源上传多个用户下行数据流,从而提高下行传输的频谱效率和提高小区吞吐量

H.Massive MIMO的应用场景

城区、高校流量高低(CBD等)

高楼覆盖场景

重大活动保障场景

3.降低时延技术

A.NR低时延保障技术分析

a.RAN时延因素

空口传输 TTI长度决定

处理 HARQ RTT决定

重传 TDD上行配比

无线信号 上、下行覆盖差 上、下行干扰

b.方案 缩短TTI

免去授权调度、灵活双工或者全双工

用户面下沉

c.方案

优化无线覆盖

B.NR时隙聚合调度

Slot Aggregation:NR中调度周期可以灵活变的,且一次可以调度多个时隙,以适应不用业务需求,降低无线时延

C.NR免授权调度

免授权调度:由于调度存在RTT时延,NR中对于时延比较敏感的业务提出免调度的过程,终端有需求直接发送

D.NR侵入式空口调度(EAI)Embed Air Interface

eMBB和uRLLC业务共存时,EAI机制可以实现uRLLC业务对eMBB资源打孔,以保障uRLLC对时延的要求

4.5G异步HARQ技术

HARQ:混合自动重传请求

5G上下行链路采用异步HARQ协议:重传在上一次传输之后的任何可用时间上进行,接收端需要被告知具体的进程号

5.D2D 通信 (Device to Device)

D2D通信,基站分配频谱用于终端与终端直接互联进行用户面数据传输,D2D关键技术包括:

a.频谱分配模式

使用蜂窝小区的剩余资源

复用蜂窝小区下行资源

复用蜂窝小区上行资源

b.干扰控制

适当的功率控制,能够在D2D复用蜂窝资源时,有效地协调D2D与蜂窝网络间的干扰

总结

提升覆盖技术:提高UE发射功率、上下行解耦

提升效率技术:新波形、新多址、新调制、新编码、新双工、CRS FREE、Massive MIMO

降低时延技术:时隙聚合调度、免调度、侵入式空口调度、异步HARQ、D2D技术

 

点击关注,第一时间了解华为云新鲜技术~

本文地址:https://blog.csdn.net/devcloud/article/details/108490780