欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

算法的理论与实践

程序员文章站 2022-03-26 22:24:12
算法 大O表示法 用来描述计算机算法的效率, 数据项个数发生变化时,算法的效率也会跟着发生改变 常见的大O表示方法 | 符号 | 名称 | | | | | O(1) | 常数的 | | O(log(n)) | 对数的 | | O(n) | 线性的 | | O(nlog(n)) | 线性和对数乘积 | ......

算法

大o表示法

用来描述计算机算法的效率,

数据项个数发生变化时,算法的效率也会跟着发生改变

常见的大o表示方法

符号 名称
o(1) 常数的
o(log(n)) 对数的
o(n) 线性的
o(nlog(n)) 线性和对数乘积
o($n^2$) 平方
o($2^n$) 指数的

当我们写一个算法的时候,其运行过程,并不是完全跟上面例子相同,它可能是个多项式,我们可以通过一些推导得出它们的大o表示法

推导成大o表示法

1、用常量1取代运行时间中所有的加法常量

2、在修改后的运行次数函数中,只保留最高阶项

3、如果最高存在且不为1,则去除与这个项相乘的常数

举例

1、如果得出的是一个常量,可以直接用上面第一条比如:76 用大o表示就是o(1)

2、如果得出的是多项式,比如:2n$^2$ + 3n + 1,根据上面第二条就等于 2n$^2$再根据第三条就等于o(n$^2$)

排序算法

注意: 如果你在面试中不知道写什么排序算法好,尽可能写快速排序算法,在大部分情况下,快速排序是效率最高的

排序算法有很多例如:冒泡、选择、插入、归并、计数、基数、希尔、堆、桶。

用三个简单排序和两个高级排序进行实例。

三个简单排序

冒泡

思路

1、对未排序的的各个元素从头到尾依次比较相邻的两个元素大小关系

2、如果左边比右边的高,则两者交换位置

3、向右移动一个位置,比较后面两个

4、当走到最右边的时候,最高的一定被放在了最右边

5、按照这个思路,从左端重新开始,这次走到倒数第二个位置即可

6、依次类推就可以将数据排序完成

代码
// 封装arraylist
function arraylist() {
  this.array = []

    arraylist.prototype.insert = function (item) {
    this.array.push(item)
  }

  arraylist.prototype.tostring = function () {
    return this.array.join()
  }
}
// 交换位置函数
arraylist.prototype.swap = function (m, n) {
  var temp = this.array[m]
  this.array[m] = this.array[n]
  this.array[n] = temp
}
arraylist.prototype.bubblesort = function () {
  // 1.获取数组的长度
  var length = this.array.length

  // 2.反向循环, 因此次数越来越少
  for (var i = length - 1; i >= 0; i--) {
    // 3.根据i的次数, 比较循环到i位置
    for (var j = 0; j < i; j++) {
      // 4.如果j位置比j+1位置的数据大, 那么就交换
      if (this.array[j] > this.array[j+1]) {
        // 交换
        this.swap(j, j+1)
      }
    }
  }
}
效率
根据n项数据的比较次数

是(n-1)+(n-2)+(n-3)+…+1 = n*(n-1)/2

推导成大o表示法n*(n-1)/2 = n$^2$/2-n/2,根据规则二变成n$^2$/2再根据规则三变成n$^2$

因此冒泡排序的比较次数大o表示法是o(n$^2$)

根据n项数据的交换次数

是n*(n-1)/2(比较次数)/2结果是交换的次数,为什么除以2是因为如果有两次比较才需要交换一次(不可能每次比较都需要交换一次),那么就需要在比较次数的基础上再除以2,由于常量不包含在大o表示法中,因此我们可以认为交换次数的大o表示法也是o(n$^2$)

选择

选择排序改进了冒泡排序,将交换次数由o(n$^2$)减少到了o(n)

但是比较次数依然是o(n$^2$)

思路

1、选定第一个索引位置,然后和后面的元素依次比较

2、如果后面的项,小于第一个索引位置的项,则与第一个交换位置

3、经过第一轮的比较后,可以确定第一个位置的项是最小的

4、然后用同样的方式把剩下的项逐个比较

5、选择排序,第一轮会选出第一小的值,第二轮会选出第二小的值,直到最后

代码
arraylist.prototype.selectionsort = function () {
  // 1.获取数组的长度
  var length = this.array.length

  // 2.外层循环: 从0位置开始取出数据, 直到length-2位置
  for (var i = 0; i < length - 1; i++) {
    // 3.内层循环: 从i+1位置开始, 和后面的内容比较
    var min = i
    for (var j = min + 1; j < length; j++) {
      // 4.如果i位置的数据大于j位置的数据, 记录最小的位置
      if (this.array[min] > this.array[j]) {
        min = j
      }
    }
    this.swap(min, i)
  }
}
效率
根据n项数据的比较次数

和冒泡排序的相同都是n*(n-1)/2

因此选择排序的比较次数大o表示法也是o(n$^2$)

根据n项数据的交换次数

选择排序每次进行选择的时候,最多需要交换一次,一共遍历了n-1次

所以选择排序的交换次数用大o表示法是o(n),所以选择排序在效率上通常是被认为高于冒泡排序的

插入

插入排序是简单排序中效率最好的

思路
局部有序

1、插入排序的核心思想是局部有序

2、局部有序就好比一个队列中,我们选了一个作为标记的成员

3、被标记的左边成员已经是局部有序的

4、这意味着,有一部分人是按照顺序排列好的,有一部分人还是没有顺序

插入排序的思路

1、从第一个元素开始,该元素可以被认为已经被排序

2、取出下一个元素,在已经排序的队列中从后向前扫描

3、如果该元素(已排序)的大于新元素,将该元素移到下一个位置

4、重复第三步骤,直到已经找到已排序的元素小于或者等于新元素的位置

5、将新元素插入到该位置后,再重复上列步骤

代码
 arraylist.prototype.insertionsort = function () {
   //获取数据长度
   var length = this.arr.length;
   // 第一次循环直接从第二项开始,第一项默认为已排序,结尾是长度-1项
   for(var i = 1;i<length;i++){
     // 因为不断访问要插入的项,所以把它保存起来,方便逐个和已排序对比
     var temp = this.arr[i];
     // 由于要从i-1项不断往前找,先把i备份成j,通过操作j来不断向前
     var j = i;
     // 第一次获取到前面一项做对比,如果前面的小于要插入的,j不能为0,不然会访问到-1项
     while(this.arr[j-1]>temp && j>0){
       // 如果大于,就让当前项等于数组前一个项
       // 当前项不会丢失,已经保存在temp
       this.arr[j] = this.arr[j-1]
       // 再将j递减,这样可以在已排序数组中把位置向前移动
       j--
     }
     // 小于要插入的,直接重新赋值到当前项
     this.arr[j] = temp
   }
 }
效率
插入排序的比较次数

1、第一趟时需要的最多次数是1,第二趟时需要的是2,依次类推最后一趟是n-1次

2、因此插入排序的最多次是:1+2+3+...+n-1 = n *(n-1)/2

3、然而每趟发现插入点的之前,平均只有全体数据项的一半需要进行比较

4、我们可以再除以2得到 n *(n-1)/4,所以相对于选择排序,其比较次数是少了一半的

插入排序的复制次数

1、第一趟时,需要的最多复制次数是1,第二趟最多的复制次数是2,依次类推,最后一趟是n-1次

2、因此复制次数最多是1+2+3+...+n-1=n *(n-1)/2

3、平均次数n *(n-1)/4

两个高级排序

希尔

希尔排序是插入排序的一种改进版,速度更快了,他主要采用了一种分组的方式

思路

希尔排序的核心就是将数据进行分组,但不是按顺序等量分组,而是

1、设置一个间隔数,例如间隔数是3那么,[n,n+3]是一组,[n+1,n+3+1]是一组

2、将所有数据都分好组后,让他们组内进行排序

3、排好序后,数值肯定离自己正确位置很近了,然后不断缩短间隔数,

4、直到间隔数为1,就是插入排序所执行的逻辑了

增量

上面的间隔数值是我们举例的,那么到底选择多少合适呢?

1、选择合适的增量

  • 在希尔排序的原稿中,他建议的初始间距是n/2,把每趟排序分成两半
  • 如果n=100的数组,那么间隔序列为:50,25,12,6,3,1
  • 这个方法的好处就是不需要在排序前为找到合适的增量进行计算

2、hibbard增量排序

  • 增量的算法为2^k-1,也就是1,3,4,7...等等
  • 这种增量的最坏复杂度为o(n^3/2),猜想的平均复杂度为o(n^5/4),目前尚未被证明

3、sedgewick增量排序

  • {1,5,19,41,109….}该序列中的项或者是94^i-9*2^i+1,或者是4^i-32^i+1
  • 这种增量最坏的复杂度为o(n^4/3),平均复杂度为o(n7^6),但也没有被完全证明
代码

这里我们使用上面的第一种

arraylist.prototype.shellsort = function () {
    // 1、获取数组长度
  var length = this.array.length
    // 2、获取初次间隔值,防止小数出现,使用floor
  var gap = math.floor(length / 2)
    // 3、如果间隔值小于1了就停止,
  // 最后一次等于1的时候就跟插入排序执行的一样了
  while (gap >=1) {
    // 4、实现插入排序,起始点是间隔的位置,比如是5,就是数组中下标为5的
    for (var i = gap; i < length; i++) {
            // 保存间隔的位置数
      var j = i
      // 保存间隔位置的值
      var temp = this.array[i]
            // 5、寻找合适位置
      // 第一个判断语句是防止溢出左侧,
      // 第二个判断语句是左侧的上一个间隔位置的值,需要大于当前的
      while (j > gap - 1 && this.array[j - gap] > temp) {
        // 如果大于,就让左侧上一个间隔位置的值移动到当前位置
        this.array[j] = this.array[j - gap]
        // 就让j值等于原来左侧上一个间隔位置的值
        j -= gap
      }
            // 如果不大于还是保存在原来的位置
            // 6、最后将间隔的位置值插入到j,也就是属于他的合适位置
      this.array[j] = temp
    }

        // 7、缩小间隔值,直到等于1
    gap = math.floor(gap / 2)
  }
}
效率

1、希尔排序的效率跟增量是有关系的

2、它的效率证明非常困难

3、但是经过统计,最坏的情况下时间复杂度为o(n$^2$),通常情况下都是要好于o(n$^2$)

4、在合适的增量和某些数量n的情况下,还要好于快速排序。

快速

快速排序几乎可以说是所有排序中速度最快的,它可以在一次循环中(其实是递归调用),找出某个元素的正确位置,并且该元素之后不需要任何移动

1、但是,没有一种算法是在任意情况下都是最优的

2、希尔排序在特定情况下要快于快速排序

3、但是快速排序在大多数情况下都是要快于希尔排序的

思路

比如我们有这样一组数据[13,81,92,43,65,34,57,26,75,6]

1、我们从其中选出了65,(也可以是其他任意数字)

2、通过算法,将所有小于65的放到65左边,大于65的放到65的右边

3、再递归处理左边的数据,(比如从左边选了31来处理左侧),递归处理右边的数据(比如选了75来处理,但是选81可能最合适,因为就不用再往右边放了)

4、就这样通过不断的递归处理,完成排序

枢纽

上面选择的65,31,75或者81就是枢纽

怎么样才能选择合适的枢纽呢

我们可以取数组的头,中,尾的中位数

7,4,5,8,9选出来的就是7,5,9,排好序就是5,7,9中位数就是7

代码
// 位置交换函数
arraylist.prototype.swap = function (m, n) {
  var temp = this.array[m]
  this.array[m] = this.array[n]
  this.array[n] = temp
}

// 选择枢纽
arraylist.prototype.median = function (left, right) {
  // 1.求出中间的位置,以防有小数点,所以使用floor
  var center = math.floor((left + right) / 2)

  // 2.判断并且进行交换
  if (this.array[left] > this.array[center]) {
    this.swap(left, center)
  }
  if (this.array[center] > this.array[right]) {
    this.swap(center, right)
  }
  if (this.array[left] > this.array[right]) {
    this.swap(left, right)
  }

  // 3.巧妙的操作: 将center移动到right - 1的位置.
  // 这样方便我们循环只对左侧数据进行操作
  this.swap(center, right - 1)

  // 4.返回枢纽
  return this.array[right - 1]
}
// 快速排序实现
arraylist.prototype.quicksort = function () {
  this.quicksortrec(0, this.array.length - 1)
}

arraylist.prototype.quicksortrec = function (left, right) {
  // 0.递归结束条件,对比的值超出了边界值,比如下标为length或者下标为-1了
  if (left >= right) return

  // 1.获取枢纽
  var pivot = this.median(left, right)

  // 2.开始进行交换,保存两个对比的下标值
  var i = left
  var j = right - 1
  while (true) {
    // 不断改变i的值
    while (this.array[++i] < pivot) { }
    // 不断改变j的值
    while (this.array[--j] > pivot) { }
    // i和j表示的是下标值
    if (i < j) {
      this.swap(i, j)
    } else {
      // 如果i>=j了表示已经溢出了,所以直接break
      break
    }
  }

  // 3.将枢纽放在正确的位置
  this.swap(i, right - 1)

  // 4.递归调用左边
  this.quicksortrec(left, i - 1)
  // 5.递归调用右边
  this.quicksortrec(i + 1, right)
}
效率
最坏情况的效率

1、如果每次选择的枢纽都是最左边或者最右边的时候效率最差

2、那么效率等同于冒泡排序

3、而我们的例子中不会有最坏情况,因为我们选的是三个值的中位值

平均效率

1、快速排序的平均效率是o(n*logn)

2、虽然其他某些算法的效率也可以达到o(n*logn),但是快速排序是最好的


注释是本人加的,可能并不是那么通俗易懂,如果有产生误导,可删除注释自行调试代码,如有问题,欢迎评论或者使用邮件与我联系