结合C++11新特性来学习C++中lambda表达式的用法
Lambda 表达式的各部分
ISO C++ 标准展示了作为第三个参数传递给 std::sort() 函数的简单 lambda:
#include <algorithm> #include <cmath> void abssort(float* x, unsigned n) { std::sort(x, x + n, // Lambda expression begins [](float a, float b) { return (std::abs(a) < std::abs(b)); } // end of lambda expression ); }
此图显示了 lambda 的组成部分:
Capture 子句(在 C++ 规范中也称为 lambda 引导。)
参数列表(可选)。 (也称为 lambda 声明符)
可变规范(可选)。
异常规范(可选)。
尾随返回类型(可选)。
“lambda 体”
Capture 子句
Lambda 可在其主体中引入新的变量(用 C++14),它还可以访问(或“捕获”)周边范围内的变量。 Lambda 以 Capture 子句(标准语法中的 lambda 引导)开头,它指定要捕获的变量以及是通过值还是引用进行捕获。 有与号 (&) 前缀的变量通过引用访问,没有该前缀的变量通过值访问。
空 capture 子句 [ ] 指示 lambda 表达式的主体不访问封闭范围中的变量。
可以使用默认捕获模式(标准语法中的 capture-default)来指示如何捕获 lambda 中引用的任何外部变量:[&] 表示通过引用捕获引用的所有变量,而 [=] 表示通过值捕获它们。 可以使用默认捕获模式,然后为特定变量显式指定相反的模式。 例如,如果 lambda 体通过引用访问外部变量 total 并通过值访问外部变量 factor,则以下 capture 子句等效:
[&total, factor] [factor, &total] [&, factor] [factor, &] [=, &total] [&total, =]
使用 capture-default 时,只有 lambda 中提及的变量才会被捕获。
如果 capture 子句包含 capture-default&,则该 capture 子句的 identifier 中没有任何 capture 可采用 & identifier 形式。 同样,如果 capture 子句包含 capture-default=,则该 capture 子句的 capture 不能采用 = identifier 形式。 identifier 或 this 在 capture 子句中出现的次数不能超过一次。 以下代码片段给出了一些示例。
struct S { void f(int i); }; void S::f(int i) { [&, i]{}; // OK [&, &i]{}; // ERROR: i preceded by & when & is the default [=, this]{}; // ERROR: this when = is the default [i, i]{}; // ERROR: i repeated }
capture 后跟省略号是包扩展,如以下可变参数模板示例中所示:
template<class... Args> void f(Args... args) { auto x = [args...] { return g(args...); }; x(); }
要在类方法的正文中使用 lambda 表达式,请将 this 指针传递给 Capture 子句,以提供对封闭类的方法和数据成员的访问权限。 有关展示如何将 lambda 表达式与类方法一起使用的示例,请参阅 Lambda 表达式的示例中的“示例:在方法中使用 Lambda 表达式”。
在使用 capture 子句时,建议你记住以下几点(尤其是使用采取多线程的 lambda 时):
引用捕获可用于修改外部变量,而值捕获却不能实现此操作。 (mutable允许修改副本,而不能修改原始项。)
引用捕获会反映外部变量的更新,而值捕获却不会反映。
引用捕获引入生存期依赖项,而值捕获却没有生存期依赖项。 当 lambda 以异步方式运行时,这一点尤其重要。 如果在异步 lambda 中通过引用捕获本地变量,该本地变量将很可能在 lambda 运行时消失,从而导致运行时访问冲突。
通用捕获 (C++14)
在 C++14 中,可在 Capture 子句中引入并初始化新的变量,而无需使这些变量存在于 lambda 函数的封闭范围内。 初始化可以任何任意表达式表示;且将从该表达式生成的类型推导新变量的类型。 此功能的一个好处是,在 C++14 中,可从周边范围捕获只移动的变量(例如 std::unique_ptr)并在 lambda 中使用它们。
pNums = make_unique<vector<int>>(nums); //... auto a = [ptr = move(pNums)]() { // use ptr };
参数列表
除了捕获变量,lambda 还可接受输入参数。 参数列表(在标准语法中称为 lambda 声明符)是可选的,它在大多数方面类似于函数的参数列表。
int y = [] (int first, int second) { return first + second; };
在 C++14 中,如果参数类型是泛型,则可以使用 auto 关键字作为类型说明符。 这将告知编译器将函数调用运算符创建为模板。 参数列表中的每个 auto 实例等效于一个不同的类型参数。
auto y = [] (auto first, auto second) { return first + second; };
lambda 表达式可以将另一个 lambda 表达式作为其参数。 有关详细信息,请参阅 Lambda 表达式的示例主题中的“高阶 Lambda 表达式”。
由于参数列表是可选的,因此在不将参数传递到 lambda 表达式,并且其 lambda-declarator: 不包含 exception-specification、trailing-return-type 或 mutable 的情况下,可以省略空括号。
可变规范
通常,lambda 的函数调用运算符为 const-by-value,但对 mutable 关键字的使用可将其取消。 它不会生成可变的数据成员。 利用可变规范,lambda 表达式的主体可以修改通过值捕获的变量。 本文后面的一些示例将显示如何使用 mutable。
异常规范
你可以使用 throw() 异常规范来指示 lambda 表达式不会引发任何异常。 与普通函数一样,如果 lambda 表达式声明 C4297 异常规范且 lambda 体引发异常,Visual C++ 编译器将生成警告 throw(),如下所示:
// throw_lambda_expression.cpp // compile with: /W4 /EHsc int main() // C4297 expected { []() throw() { throw 5; }(); }
返回类型
将自动推导 lambda 表达式的返回类型。 无需使用 auto 关键字,除非指定尾随返回类型。 trailing-return-type 类似于普通方法或函数的返回类型部分。 但是,返回类型必须跟在参数列表的后面,你必须在返回类型前面包含 trailing-return-type 关键字 ->。
如果 lambda 体仅包含一个返回语句或其表达式不返回值,则可以省略 lambda 表达式的返回类型部分。 如果 lambda 体包含单个返回语句,编译器将从返回表达式的类型推导返回类型。 否则,编译器会将返回类型推导为 void。 下面的代码示例片段说明了这一原则。
auto x1 = [](int i){ return i; }; // OK: return type is int auto x2 = []{ return{ 1, 2 }; }; // ERROR: return type is void, deducing // return type from braced-init-list is not valid
lambda 表达式可以生成另一个 lambda 表达式作为其返回值。 有关详细信息,请参阅 Lambda 表达式的示例中的“高阶 Lambda 表达式”。
Lambda 体
lambda 表达式的 lambda 体(标准语法中的 compound-statement)可包含普通方法或函数的主体可包含的任何内容。 普通函数和 lambda 表达式的主体均可访问以下变量类型:
从封闭范围捕获变量,如前所述。
参数
本地声明变量
类数据成员(在类内部声明并且捕获 this 时)
具有静态存储持续时间的任何变量(例如,全局变量)
以下示例包含通过值显式捕获变量 n 并通过引用隐式捕获变量 m 的 lambda 表达式:
// captures_lambda_expression.cpp // compile with: /W4 /EHsc #include <iostream> using namespace std; int main() { int m = 0; int n = 0; [&, n] (int a) mutable { m = ++n + a; }(4); cout << m << endl << n << endl; }
输出:
5 0
由于变量 n 是通过值捕获的,因此在调用 lambda 表达式后,变量的值仍保持 0 不变。 mutable 规范允许在 lambda 中修改 n。
尽管 lambda 表达式只能捕获具有自动存储持续时间的变量,但你可以在 lambda 表达式的主体中使用具有静态存储持续时间的变量。 以下示例使用 generate 函数和 lambda 表达式为 vector 对象中的每个元素赋值。 lambda 表达式将修改静态变量以生成下一个元素的值。
void fillVector(vector<int>& v) { // A local static variable. static int nextValue = 1; // The lambda expression that appears in the following call to // the generate function modifies and uses the local static // variable nextValue. generate(v.begin(), v.end(), [] { return nextValue++; }); //WARNING: this is not thread-safe and is shown for illustration only }
下面的代码示例使用上一示例中的函数,并添加了使用 STL 算法 generate_n 的 lambda 表达式的示例。 该 lambda 表达式将 vector 对象的元素指派给前两个元素之和。 使用了 mutable 关键字,以使 lambda 表达式的主体可以修改 lambda 表达式通过值捕获的外部变量 x 和 y 的副本。 由于 lambda 表达式通过值捕获原始变量 x 和 y,因此它们的值在 lambda 执行后仍为 1。
// compile with: /W4 /EHsc #include <algorithm> #include <iostream> #include <vector> #include <string> using namespace std; template <typename C> void print(const string& s, const C& c) { cout << s; for (const auto& e : c) { cout << e << " "; } cout << endl; } void fillVector(vector<int>& v) { // A local static variable. static int nextValue = 1; // The lambda expression that appears in the following call to // the generate function modifies and uses the local static // variable nextValue. generate(v.begin(), v.end(), [] { return nextValue++; }); //WARNING: this is not thread-safe and is shown for illustration only } int main() { // The number of elements in the vector. const int elementCount = 9; // Create a vector object with each element set to 1. vector<int> v(elementCount, 1); // These variables hold the previous two elements of the vector. int x = 1; int y = 1; // Sets each element in the vector to the sum of the // previous two elements. generate_n(v.begin() + 2, elementCount - 2, [=]() mutable throw() -> int { // lambda is the 3rd parameter // Generate current value. int n = x + y; // Update previous two values. x = y; y = n; return n; }); print("vector v after call to generate_n() with lambda: ", v); // Print the local variables x and y. // The values of x and y hold their initial values because // they are captured by value. cout << "x: " << x << " y: " << y << endl; // Fill the vector with a sequence of numbers fillVector(v); print("vector v after 1st call to fillVector(): ", v); // Fill the vector with the next sequence of numbers fillVector(v); print("vector v after 2nd call to fillVector(): ", v); }
输出:
vector v after call to generate_n() with lambda: 1 1 2 3 5 8 13 21 34 x: 1 y: 1 vector v after 1st call to fillVector(): 1 2 3 4 5 6 7 8 9 vector v after 2nd call to fillVector(): 10 11 12 13 14 15 16 17 18
更多结合C++11新特性来学习C++中lambda表达式的用法相关文章请关注PHP中文网!
上一篇: js 删除obj对象的属性
下一篇: Unity 3D场景简单镜头行为两例