随机森林算法入门(python)
随机森林能够用于分类和回归问题,可以处理大量特征,并能够帮助估计用于建模数据变量的重要性。
这篇文章是关于如何使用Python构建随机森林模型。
1 什么是随机森林
随机森林可以用于几乎任何一种预测问题(包括非线性问题)。它是一个相对较新的机器学习策略(90年代诞生于贝尔实验室)可以用在任何方面。它属于机器学习中的集成学习这一大类。
1.1 集成学习
集成学习是将多个模型进行组合来解决单一的预测问题。它的原理是生成多个分类器模型,各自独立地学习并作出预测。这些预测最后结合起来得到预测结果,因此和单独分类器的结果相比,结果一样或更好。
随机森林是集成学习的一个分支,因为它依靠于决策树的集成。更多关于python实现集成学习的文档: Scikit-Learn 文档。
1.2 随机决策树
我们知道随机森林是将其他的模型进行聚合, 但具体是哪种模型呢?从其名称也可以看出,随机森林聚合的是分类(或回归) 树。一颗决策树是由一系列的决策组合而成的,可用于数据集的观测值进行分类 。
1.3 随机森林
引入的随机森林算法将自动创建随机决策树群。由于这些树是随机生成的,大部分的树(甚至 99.9%)对解决你的分类或回归问题是没有有意义。
1.4 投票
那么,生成甚至上万的糟糕的模型有什么好处呢?好吧,这确实没有。但有用的是,少数非常好的决策树也随之一起生成了。
当你要做预测的时候,新的观察值随着决策树自上而下走下来并被赋予一个预测值或标签。一旦森林中的每棵树都给有了预测值或标签,所有的预测结果将被归总到一起,所有树的投票返回做为最终的预测结果。
简单来说,99.9%不相关的树做出的预测结果涵盖所有的情况,这些预测结果将会彼此抵消。少数优秀的树的预测结果将会脱颖而出,从而得到一个好的预测结果。
2 为什么要用它
随机森林是机器学习方法中的Leatherman(多功能折叠刀)。你几乎可以把任何东西扔给它。它在估计推断映射方面做的特别好,从而不需要类似SVM医一样过多的调参(这点对时间紧迫的朋友非常好)。
2.1 一个映射的例子
随机森林可以在未经特意手工进行数据变换的情况下学习。以函数f(x)=log(x)为例。
我们将在Yhat自己的交互环境Rodeo中利用Python生成分析数据,你可以在here下载Rodeo的Mac,Windows和Linux的安装文件。
首先,我们先生成一下数据并添加噪声。
import numpy as np import pylab as pl x = np.random.uniform(1, 100, 1000) y = np.log(x) + np.random.normal(0, .3, 1000) pl.scatter(x, y, s=1, label="log(x) with noise") pl.plot(np.arange(1, 100), np.log(np.arange(1, 100)), c="b", label="log(x) true function") pl.xlabel("x") pl.ylabel("f(x) = log(x)") pl.legend(loc="best") pl.title("A Basic Log Function") pl.show()
得到如下结果:
如果我们建立了一个基本的线性模型通过使用x来预测y,我们需要作一条直线,一定成都市算是平分log(x)函数。而如果我们使用随机森林算法,它可以更好的逼近log(x)曲线从而使得它看起来更像实际的函数。
当然,你也可以说随机森林对log(x)函数有点过拟合。不管怎么样,这说明了随机森林并不限于线性问题。
3 使用方法
3.1 特征选择
随机森林的一个最好用例是特征选择。尝试很多个决策树变量的一个副产品就是,你可以检查变量在每棵树中表现的是最佳还是最糟糕。
当一些树使用一个变量,而其他的不使用这个变量,你就可以对比信息的丢失或增加。实现的比较好的随机森林工具能够为你做这些事情,所以你需要做的仅仅是去查看那个方法或参数。
在下述的例子中,我们尝试弄明白区分红酒或白酒时,哪些变量是最重要的。
3.2 分类
随机森林也很善长分类问题。它可以被用于为多个可能目标类别做预测,它也可以在调整后输出概率。你需要注意的一件事情是过拟合。
随机森林容易产生过拟合,特别是在数据集相对小的时候。当你的模型对于测试集合做出“太好”的预测的时候就应该怀疑一下了。避免过拟合的一个方法是在模型中只使用有相关性的特征,比如使用之前提到的特征选择。
3.3 回归
随机森林也可以用于回归问题。
我发现,不像其他的方法,随机森林非常擅长于分类变量或分类变量与连续变量混合的情况。
4 一个简单的Python示例
from sklearn.datasets import load_iris from sklearn.ensemble import RandomForestClassifier import pandas as pd import numpy as np iris = load_iris() df = pd.DataFrame(iris.data, columns=iris.feature_names) df['is_train'] = np.random.uniform(0, 1, len(df)) <= .75 df['species'] = pd.Categorical.from_codes(iris.target, iris.target_names) df.head() train, test = df[df['is_train']==True], df[df['is_train']==False] features = df.columns[:4] clf = RandomForestClassifier(n_jobs=2)y, _ = pd.factorize(train['species']) clf.fit(train[features], y) preds = iris.target_names[clf.predict(test[features])] pd.crosstab(test['species'], preds, rownames=['actual'], colnames=['preds'])
下面就是你应该看到的结果了。由于我们随机选择数据,所以实际结果每次都会不一样。
5 结语
随机森林相当起来非常容易。不过和其他任何建模方法一样要注意过拟合问题。如果你有兴趣用R语言使用随机森林,可以查看randomForest包。
以上就是随机森林算法入门(python)的内容,更多相关内容请关注PHP中文网(www.php.cn)!