欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

网上得到的一个3D渲染引擎

程序员文章站 2022-03-26 08:45:19
...
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <assert.h>

#include <windows.h>
#include <tchar.h>

typedef unsigned int IUINT32;

//=====================================================================
// 数学库:此部分应该不用详解,熟悉 D3D 矩阵变换即可
//=====================================================================
typedef struct { float m[4][4]; } matrix_t;
typedef struct { float x, y, z, w; } vector_t;
typedef vector_t point_t;

int CMID(int x, int min, int max) { return (x < min)? min : ((x > max)? max : x); }

// 计算插值:t 为 [0, 1] 之间的数值
float interp(float x1, float x2, float t) { return x1 + (x2 - x1) * t; }

// | v |
float vector_length(const vector_t *v) {
	float sq = v->x * v->x + v->y * v->y + v->z * v->z;
	return (float)sqrt(sq);
}

// z = x + y
void vector_add(vector_t *z, const vector_t *x, const vector_t *y) {
	z->x = x->x + y->x;
	z->y = x->y + y->y;
	z->z = x->z + y->z;
	z->w = 1.0;
}

// z = x - y
void vector_sub(vector_t *z, const vector_t *x, const vector_t *y) {
	z->x = x->x - y->x;
	z->y = x->y - y->y;
	z->z = x->z - y->z;
	z->w = 1.0;
}

// 矢量点乘
float vector_dotproduct(const vector_t *x, const vector_t *y) {
	return x->x * y->x + x->y * y->y + x->z * y->z;
}

// 矢量叉乘
void vector_crossproduct(vector_t *z, const vector_t *x, const vector_t *y) {
	float m1, m2, m3;
	m1 = x->y * y->z - x->z * y->y;
	m2 = x->z * y->x - x->x * y->z;
	m3 = x->x * y->y - x->y * y->x;
	z->x = m1;
	z->y = m2;
	z->z = m3;
	z->w = 1.0f;
}

// 矢量插值,t取值 [0, 1]
void vector_interp(vector_t *z, const vector_t *x1, const vector_t *x2, float t) {
	z->x = interp(x1->x, x2->x, t);
	z->y = interp(x1->y, x2->y, t);
	z->z = interp(x1->z, x2->z, t);
	z->w = 1.0f;
}

// 矢量归一化
void vector_normalize(vector_t *v) {
	float length = vector_length(v);
	if (length != 0.0f) {
		float inv = 1.0f / length;
		v->x *= inv; 
		v->y *= inv;
		v->z *= inv;
	}
}

// c = a + b
void matrix_add(matrix_t *c, const matrix_t *a, const matrix_t *b) {
	int i, j;
	for (i = 0; i < 4; i++) {
		for (j = 0; j < 4; j++)
			c->m[i][j] = a->m[i][j] + b->m[i][j];
	}
}

// c = a - b
void matrix_sub(matrix_t *c, const matrix_t *a, const matrix_t *b) {
	int i, j;
	for (i = 0; i < 4; i++) {
		for (j = 0; j < 4; j++)
			c->m[i][j] = a->m[i][j] - b->m[i][j];
	}
}

// c = a * b
void matrix_mul(matrix_t *c, const matrix_t *a, const matrix_t *b) {
	matrix_t z;
	int i, j;
	for (i = 0; i < 4; i++) {
		for (j = 0; j < 4; j++) {
			z.m[j][i] = (a->m[j][0] * b->m[0][i]) +
						(a->m[j][1] * b->m[1][i]) +
						(a->m[j][2] * b->m[2][i]) +
						(a->m[j][3] * b->m[3][i]);
		}
	}
	c[0] = z;
}

// c = a * f
void matrix_scale(matrix_t *c, const matrix_t *a, float f) {
	int i, j;
	for (i = 0; i < 4; i++) {
		for (j = 0; j < 4; j++) 
			c->m[i][j] = a->m[i][j] * f;
	}
}

// y = x * m
void matrix_apply(vector_t *y, const vector_t *x, const matrix_t *m) {
	float X = x->x, Y = x->y, Z = x->z, W = x->w;
	y->x = X * m->m[0][0] + Y * m->m[1][0] + Z * m->m[2][0] + W * m->m[3][0];
	y->y = X * m->m[0][1] + Y * m->m[1][1] + Z * m->m[2][1] + W * m->m[3][1];
	y->z = X * m->m[0][2] + Y * m->m[1][2] + Z * m->m[2][2] + W * m->m[3][2];
	y->w = X * m->m[0][3] + Y * m->m[1][3] + Z * m->m[2][3] + W * m->m[3][3];
}

void matrix_set_identity(matrix_t *m) {
	m->m[0][0] = m->m[1][1] = m->m[2][2] = m->m[3][3] = 1.0f; 
	m->m[0][1] = m->m[0][2] = m->m[0][3] = 0.0f;
	m->m[1][0] = m->m[1][2] = m->m[1][3] = 0.0f;
	m->m[2][0] = m->m[2][1] = m->m[2][3] = 0.0f;
	m->m[3][0] = m->m[3][1] = m->m[3][2] = 0.0f;
}

void matrix_set_zero(matrix_t *m) {
	m->m[0][0] = m->m[0][1] = m->m[0][2] = m->m[0][3] = 0.0f;
	m->m[1][0] = m->m[1][1] = m->m[1][2] = m->m[1][3] = 0.0f;
	m->m[2][0] = m->m[2][1] = m->m[2][2] = m->m[2][3] = 0.0f;
	m->m[3][0] = m->m[3][1] = m->m[3][2] = m->m[3][3] = 0.0f;
}

// 平移变换
void matrix_set_translate(matrix_t *m, float x, float y, float z) {
	matrix_set_identity(m);
	m->m[3][0] = x;
	m->m[3][1] = y;
	m->m[3][2] = z;
}

// 缩放变换
void matrix_set_scale(matrix_t *m, float x, float y, float z) {
	matrix_set_identity(m);
	m->m[0][0] = x;
	m->m[1][1] = y;
	m->m[2][2] = z;
}

// 旋转矩阵
void matrix_set_rotate(matrix_t *m, float x, float y, float z, float theta) {
	float qsin = (float)sin(theta * 0.5f);
	float qcos = (float)cos(theta * 0.5f);
	vector_t vec = { x, y, z, 1.0f };
	float w = qcos;
	vector_normalize(&vec);
	x = vec.x * qsin;
	y = vec.y * qsin;
	z = vec.z * qsin;
	m->m[0][0] = 1 - 2 * y * y - 2 * z * z;
	m->m[1][0] = 2 * x * y - 2 * w * z;
	m->m[2][0] = 2 * x * z + 2 * w * y;
	m->m[0][1] = 2 * x * y + 2 * w * z;
	m->m[1][1] = 1 - 2 * x * x - 2 * z * z;
	m->m[2][1] = 2 * y * z - 2 * w * x;
	m->m[0][2] = 2 * x * z - 2 * w * y;
	m->m[1][2] = 2 * y * z + 2 * w * x;
	m->m[2][2] = 1 - 2 * x * x - 2 * y * y;
	m->m[0][3] = m->m[1][3] = m->m[2][3] = 0.0f;
	m->m[3][0] = m->m[3][1] = m->m[3][2] = 0.0f;	
	m->m[3][3] = 1.0f;
}

// 设置摄像机
void matrix_set_lookat(matrix_t *m, const vector_t *eye, const vector_t *at, const vector_t *up) {
	vector_t xaxis, yaxis, zaxis;

	vector_sub(&zaxis, at, eye);
	vector_normalize(&zaxis);
	vector_crossproduct(&xaxis, up, &zaxis);
	vector_normalize(&xaxis);
	vector_crossproduct(&yaxis, &zaxis, &xaxis);

	m->m[0][0] = xaxis.x;
	m->m[1][0] = xaxis.y;
	m->m[2][0] = xaxis.z;
	m->m[3][0] = -vector_dotproduct(&xaxis, eye);

	m->m[0][1] = yaxis.x;
	m->m[1][1] = yaxis.y;
	m->m[2][1] = yaxis.z;
	m->m[3][1] = -vector_dotproduct(&yaxis, eye);

	m->m[0][2] = zaxis.x;
	m->m[1][2] = zaxis.y;
	m->m[2][2] = zaxis.z;
	m->m[3][2] = -vector_dotproduct(&zaxis, eye);
	
	m->m[0][3] = m->m[1][3] = m->m[2][3] = 0.0f;
	m->m[3][3] = 1.0f;
}

// D3DXMatrixPerspectiveFovLH
void matrix_set_perspective(matrix_t *m, float fovy, float aspect, float zn, float zf) {
	float fax = 1.0f / (float)tan(fovy * 0.5f);
	matrix_set_zero(m);
	m->m[0][0] = (float)(fax / aspect);
	m->m[1][1] = (float)(fax);
	m->m[2][2] = zf / (zf - zn);
	m->m[3][2] = - zn * zf / (zf - zn);
	m->m[2][3] = 1;
}


//=====================================================================
// 坐标变换
//=====================================================================
typedef struct { 
	matrix_t world;         // 世界坐标变换
	matrix_t view;          // 摄影机坐标变换
	matrix_t projection;    // 投影变换
	matrix_t transform;     // transform = world * view * projection
	float w, h;             // 屏幕大小
}	transform_t;


// 矩阵更新,计算 transform = world * view * projection
void transform_update(transform_t *ts) {
	matrix_t m;
	matrix_mul(&m, &ts->world, &ts->view);
	matrix_mul(&ts->transform, &m, &ts->projection);
}

// 初始化,设置屏幕长宽
void transform_init(transform_t *ts, int width, int height) {
	float aspect = (float)width / ((float)height);
	matrix_set_identity(&ts->world);
	matrix_set_identity(&ts->view);
	matrix_set_perspective(&ts->projection, 3.1415926f * 0.5f, aspect, 1.0f, 500.0f);
	ts->w = (float)width;
	ts->h = (float)height;
	transform_update(ts);
}

// 将矢量 x 进行 project 
void transform_apply(const transform_t *ts, vector_t *y, const vector_t *x) {
	matrix_apply(y, x, &ts->transform);
}

// 检查齐次坐标同 cvv 的边界用于视锥裁剪
int transform_check_cvv(const vector_t *v) {
	float w = v->w;
	int check = 0;
	if (v->z < 0.0f) check |= 1;
	if (v->z >  w) check |= 2;
	if (v->x < -w) check |= 4;
	if (v->x >  w) check |= 8;
	if (v->y < -w) check |= 16;
	if (v->y >  w) check |= 32;
	return check;
}

// 归一化,得到屏幕坐标
void transform_homogenize(const transform_t *ts, vector_t *y, const vector_t *x) {
	float rhw = 1.0f / x->w;
	y->x = (x->x * rhw + 1.0f) * ts->w * 0.5f;
	y->y = (1.0f - x->y * rhw) * ts->h * 0.5f;
	y->z = x->z * rhw;
	y->w = 1.0f;
}


//=====================================================================
// 几何计算:顶点、扫描线、边缘、矩形、步长计算
//=====================================================================
typedef struct { float r, g, b; } color_t;
typedef struct { float u, v; } texcoord_t;
typedef struct { point_t pos; texcoord_t tc; color_t color; float rhw; } vertex_t;

typedef struct { vertex_t v, v1, v2; } edge_t;
typedef struct { float top, bottom; edge_t left, right; } trapezoid_t;
typedef struct { vertex_t v, step; int x, y, w; } scanline_t;


void vertex_rhw_init(vertex_t *v) {
	float rhw = 1.0f / v->pos.w;
	v->rhw = rhw;
	v->tc.u *= rhw;
	v->tc.v *= rhw;
	v->color.r *= rhw;
	v->color.g *= rhw;
	v->color.b *= rhw;
}

void vertex_interp(vertex_t *y, const vertex_t *x1, const vertex_t *x2, float t) {
	vector_interp(&y->pos, &x1->pos, &x2->pos, t);
	y->tc.u = interp(x1->tc.u, x2->tc.u, t);
	y->tc.v = interp(x1->tc.v, x2->tc.v, t);
	y->color.r = interp(x1->color.r, x2->color.r, t);
	y->color.g = interp(x1->color.g, x2->color.g, t);
	y->color.b = interp(x1->color.b, x2->color.b, t);
	y->rhw = interp(x1->rhw, x2->rhw, t);
}

void vertex_division(vertex_t *y, const vertex_t *x1, const vertex_t *x2, float w) {
	float inv = 1.0f / w;
	y->pos.x = (x2->pos.x - x1->pos.x) * inv;
	y->pos.y = (x2->pos.y - x1->pos.y) * inv;
	y->pos.z = (x2->pos.z - x1->pos.z) * inv;
	y->pos.w = (x2->pos.w - x1->pos.w) * inv;
	y->tc.u = (x2->tc.u - x1->tc.u) * inv;
	y->tc.v = (x2->tc.v - x1->tc.v) * inv;
	y->color.r = (x2->color.r - x1->color.r) * inv;
	y->color.g = (x2->color.g - x1->color.g) * inv;
	y->color.b = (x2->color.b - x1->color.b) * inv;
	y->rhw = (x2->rhw - x1->rhw) * inv;
}

void vertex_add(vertex_t *y, const vertex_t *x) {
	y->pos.x += x->pos.x;
	y->pos.y += x->pos.y;
	y->pos.z += x->pos.z;
	y->pos.w += x->pos.w;
	y->rhw += x->rhw;
	y->tc.u += x->tc.u;
	y->tc.v += x->tc.v;
	y->color.r += x->color.r;
	y->color.g += x->color.g;
	y->color.b += x->color.b;
}

// 根据三角形生成 0-2 个梯形,并且返回合法梯形的数量
int trapezoid_init_triangle(trapezoid_t *trap, const vertex_t *p1, 
	const vertex_t *p2, const vertex_t *p3) {
	const vertex_t *p;
	float k, x;

	if (p1->pos.y > p2->pos.y) p = p1, p1 = p2, p2 = p;
	if (p1->pos.y > p3->pos.y) p = p1, p1 = p3, p3 = p;
	if (p2->pos.y > p3->pos.y) p = p2, p2 = p3, p3 = p;
	if (p1->pos.y == p2->pos.y && p1->pos.y == p3->pos.y) return 0;
	if (p1->pos.x == p2->pos.x && p1->pos.x == p3->pos.x) return 0;

	if (p1->pos.y == p2->pos.y) {	// triangle down
		if (p1->pos.x > p2->pos.x) p = p1, p1 = p2, p2 = p;
		trap[0].top = p1->pos.y;
		trap[0].bottom = p3->pos.y;
		trap[0].left.v1 = *p1;
		trap[0].left.v2 = *p3;
		trap[0].right.v1 = *p2;
		trap[0].right.v2 = *p3;
		return (trap[0].top < trap[0].bottom)? 1 : 0;
	}

	if (p2->pos.y == p3->pos.y) {	// triangle up
		if (p2->pos.x > p3->pos.x) p = p2, p2 = p3, p3 = p;
		trap[0].top = p1->pos.y;
		trap[0].bottom = p3->pos.y;
		trap[0].left.v1 = *p1;
		trap[0].left.v2 = *p2;
		trap[0].right.v1 = *p1;
		trap[0].right.v2 = *p3;
		return (trap[0].top < trap[0].bottom)? 1 : 0;
	}

	trap[0].top = p1->pos.y;
	trap[0].bottom = p2->pos.y;
	trap[1].top = p2->pos.y;
	trap[1].bottom = p3->pos.y;

	k = (p3->pos.y - p1->pos.y) / (p2->pos.y - p1->pos.y);
	x = p1->pos.x + (p2->pos.x - p1->pos.x) * k;

	if (x <= p3->pos.x) {		// triangle left
		trap[0].left.v1 = *p1;
		trap[0].left.v2 = *p2;
		trap[0].right.v1 = *p1;
		trap[0].right.v2 = *p3;
		trap[1].left.v1 = *p2;
		trap[1].left.v2 = *p3;
		trap[1].right.v1 = *p1;
		trap[1].right.v2 = *p3;
	}	else {					// triangle right
		trap[0].left.v1 = *p1;
		trap[0].left.v2 = *p3;
		trap[0].right.v1 = *p1;
		trap[0].right.v2 = *p2;
		trap[1].left.v1 = *p1;
		trap[1].left.v2 = *p3;
		trap[1].right.v1 = *p2;
		trap[1].right.v2 = *p3;
	}

	return 2;
}

// 按照 Y 坐标计算出左右两条边纵坐标等于 Y 的顶点
void trapezoid_edge_interp(trapezoid_t *trap, float y) {
	float s1 = trap->left.v2.pos.y - trap->left.v1.pos.y;
	float s2 = trap->right.v2.pos.y - trap->right.v1.pos.y;
	float t1 = (y - trap->left.v1.pos.y) / s1;
	float t2 = (y - trap->right.v1.pos.y) / s2;
	vertex_interp(&trap->left.v, &trap->left.v1, &trap->left.v2, t1);
	vertex_interp(&trap->right.v, &trap->right.v1, &trap->right.v2, t2);
}

// 根据左右两边的端点,初始化计算出扫描线的起点和步长
void trapezoid_init_scan_line(const trapezoid_t *trap, scanline_t *scanline, int y) {
	float width = trap->right.v.pos.x - trap->left.v.pos.x;
	scanline->x = (int)(trap->left.v.pos.x + 0.5f);
	scanline->w = (int)(trap->right.v.pos.x + 0.5f) - scanline->x;
	scanline->y = y;
	scanline->v = trap->left.v;
	if (trap->left.v.pos.x >= trap->right.v.pos.x) scanline->w = 0;
	vertex_division(&scanline->step, &trap->left.v, &trap->right.v, width);
}


//=====================================================================
// 渲染设备
//=====================================================================
typedef struct {
	transform_t transform;      // 坐标变换器
	int width;                  // 窗口宽度
	int height;                 // 窗口高度
	IUINT32 **framebuffer;      // 像素缓存:framebuffer[y] 代表第 y行
	float **zbuffer;            // 深度缓存:zbuffer[y] 为第 y行指针
	IUINT32 **texture;          // 纹理:同样是每行索引
	int tex_width;              // 纹理宽度
	int tex_height;             // 纹理高度
	float max_u;                // 纹理最大宽度:tex_width - 1
	float max_v;                // 纹理最大高度:tex_height - 1
	int render_state;           // 渲染状态
	IUINT32 background;         // 背景颜色
	IUINT32 foreground;         // 线框颜色
}	device_t;

#define RENDER_STATE_WIREFRAME      1		// 渲染线框
#define RENDER_STATE_TEXTURE        2		// 渲染纹理
#define RENDER_STATE_COLOR          4		// 渲染颜色

// 设备初始化,fb为外部帧缓存,非 NULL 将引用外部帧缓存(每行 4字节对齐)
void device_init(device_t *device, int width, int height, void *fb) {
	int need = sizeof(void*) * (height * 2 + 1024) + width * height * 8;
	char *ptr = (char*)malloc(need + 64);
	char *framebuf, *zbuf;
	int j;
	assert(ptr);
	device->framebuffer = (IUINT32**)ptr;
	device->zbuffer = (float**)(ptr + sizeof(void*) * height);
	ptr += sizeof(void*) * height * 2;
	device->texture = (IUINT32**)ptr;
	ptr += sizeof(void*) * 1024;
	framebuf = (char*)ptr;
	zbuf = (char*)ptr + width * height * 4;
	ptr += width * height * 8;
	if (fb != NULL) framebuf = (char*)fb;
	for (j = 0; j < height; j++) {
		device->framebuffer[j] = (IUINT32*)(framebuf + width * 4 * j);
		device->zbuffer[j] = (float*)(zbuf + width * 4 * j);
	}
	device->texture[0] = (IUINT32*)ptr;
	device->texture[1] = (IUINT32*)(ptr + 16);
	memset(device->texture[0], 0, 64);
	device->tex_width = 2;
	device->tex_height = 2;
	device->max_u = 1.0f;
	device->max_v = 1.0f;
	device->width = width;
	device->height = height;
	device->background = 0xc0c0c0;
	device->foreground = 0;
	transform_init(&device->transform, width, height);
	device->render_state = RENDER_STATE_WIREFRAME;
}

// 删除设备
void device_destroy(device_t *device) {
	if (device->framebuffer) 
		free(device->framebuffer);
	device->framebuffer = NULL;
	device->zbuffer = NULL;
	device->texture = NULL;
}

// 设置当前纹理
void device_set_texture(device_t *device, void *bits, long pitch, int w, int h) {
	char *ptr = (char*)bits;
	int j;
	assert(w <= 1024 && h <= 1024);
	for (j = 0; j < h; ptr += pitch, j++) 	// 重新计算每行纹理的指针
		device->texture[j] = (IUINT32*)ptr;
	device->tex_width = w;
	device->tex_height = h;
	device->max_u = (float)(w - 1);
	device->max_v = (float)(h - 1);
}

// 清空 framebuffer 和 zbuffer
void device_clear(device_t *device, int mode) {
	int y, x, height = device->height;
	for (y = 0; y < device->height; y++) {
		IUINT32 *dst = device->framebuffer[y];
		IUINT32 cc = (height - 1 - y) * 230 / (height - 1);
		cc = (cc << 16) | (cc << 8) | cc;
		if (mode == 0) cc = device->background;
		for (x = device->width; x > 0; dst++, x--) dst[0] = cc;
	}
	for (y = 0; y < device->height; y++) {
		float *dst = device->zbuffer[y];
		for (x = device->width; x > 0; dst++, x--) dst[0] = 0.0f;
	}
}

// 画点
void device_pixel(device_t *device, int x, int y, IUINT32 color) {
	if (((IUINT32)x) < (IUINT32)device->width && ((IUINT32)y) < (IUINT32)device->height) {
		device->framebuffer[y][x] = color;
	}
}

// 绘制线段
void device_draw_line(device_t *device, int x1, int y1, int x2, int y2, IUINT32 c) {
	int x, y, rem = 0;
	if (x1 == x2 && y1 == y2) {
		device_pixel(device, x1, y1, c);
	}	else if (x1 == x2) {
		int inc = (y1 <= y2)? 1 : -1;
		for (y = y1; y != y2; y += inc) device_pixel(device, x1, y, c);
		device_pixel(device, x2, y2, c);
	}	else if (y1 == y2) {
		int inc = (x1 <= x2)? 1 : -1;
		for (x = x1; x != x2; x += inc) device_pixel(device, x, y1, c);
		device_pixel(device, x2, y2, c);
	}	else {
		int dx = (x1 < x2)? x2 - x1 : x1 - x2;
		int dy = (y1 < y2)? y2 - y1 : y1 - y2;
		if (dx >= dy) {
			if (x2 < x1) x = x1, y = y1, x1 = x2, y1 = y2, x2 = x, y2 = y;
			for (x = x1, y = y1; x <= x2; x++) {
				device_pixel(device, x, y, c);
				rem += dy;
				if (rem >= dx) {
					rem -= dx;
					y += (y2 >= y1)? 1 : -1;
					device_pixel(device, x, y, c);
				}
			}
			device_pixel(device, x2, y2, c);
		}	else {
			if (y2 < y1) x = x1, y = y1, x1 = x2, y1 = y2, x2 = x, y2 = y;
			for (x = x1, y = y1; y <= y2; y++) {
				device_pixel(device, x, y, c);
				rem += dx;
				if (rem >= dy) {
					rem -= dy;
					x += (x2 >= x1)? 1 : -1;
					device_pixel(device, x, y, c);
				}
			}
			device_pixel(device, x2, y2, c);
		}
	}
}

// 根据坐标读取纹理
IUINT32 device_texture_read(const device_t *device, float u, float v) {
	int x, y;
	u = u * device->max_u;
	v = v * device->max_v;
	x = (int)(u + 0.5f);
	y = (int)(v + 0.5f);
	x = CMID(x, 0, device->tex_width - 1);
	y = CMID(y, 0, device->tex_height - 1);
	return device->texture[y][x];
}


//=====================================================================
// 渲染实现
//=====================================================================

// 绘制扫描线
void device_draw_scanline(device_t *device, scanline_t *scanline) {
	IUINT32 *framebuffer = device->framebuffer[scanline->y];
	float *zbuffer = device->zbuffer[scanline->y];
	int x = scanline->x;
	int w = scanline->w;
	int width = device->width;
	int render_state = device->render_state;
	for (; w > 0; x++, w--) {
		if (x >= 0 && x < width) {
			float rhw = scanline->v.rhw;
			if (rhw >= zbuffer[x]) {	
				float w = 1.0f / rhw;
				zbuffer[x] = rhw;
				if (render_state & RENDER_STATE_COLOR) {
					float r = scanline->v.color.r * w;
					float g = scanline->v.color.g * w;
					float b = scanline->v.color.b * w;
					int R = (int)(r * 255.0f);
					int G = (int)(g * 255.0f);
					int B = (int)(b * 255.0f);
					R = CMID(R, 0, 255);
					G = CMID(G, 0, 255);
					B = CMID(B, 0, 255);
					framebuffer[x] = (R << 16) | (G << 8) | (B);
				}
				if (render_state & RENDER_STATE_TEXTURE) {
					float u = scanline->v.tc.u * w;
					float v = scanline->v.tc.v * w;
					IUINT32 cc = device_texture_read(device, u, v);
					framebuffer[x] = cc;
				}
			}
		}
		vertex_add(&scanline->v, &scanline->step);
		if (x >= width) break;
	}
}

// 主渲染函数
void device_render_trap(device_t *device, trapezoid_t *trap) {
	scanline_t scanline;
	int j, top, bottom;
	top = (int)(trap->top + 0.5f);
	bottom = (int)(trap->bottom + 0.5f);
	for (j = top; j < bottom; j++) {
		if (j >= 0 && j < device->height) {
			trapezoid_edge_interp(trap, (float)j + 0.5f);
			trapezoid_init_scan_line(trap, &scanline, j);
			device_draw_scanline(device, &scanline);
		}
		if (j >= device->height) break;
	}
}

// 根据 render_state 绘制原始三角形
void device_draw_primitive(device_t *device, const vertex_t *v1, 
	const vertex_t *v2, const vertex_t *v3) {
	point_t p1, p2, p3, c1, c2, c3;
	int render_state = device->render_state;

	// 按照 Transform 变化
	transform_apply(&device->transform, &c1, &v1->pos);
	transform_apply(&device->transform, &c2, &v2->pos);
	transform_apply(&device->transform, &c3, &v3->pos);

	// 裁剪,注意此处可以完善为具体判断几个点在 cvv内以及同cvv相交平面的坐标比例
	// 进行进一步精细裁剪,将一个分解为几个完全处在 cvv内的三角形
	if (transform_check_cvv(&c1) != 0) return;
	if (transform_check_cvv(&c2) != 0) return;
	if (transform_check_cvv(&c3) != 0) return;

	// 归一化
	transform_homogenize(&device->transform, &p1, &c1);
	transform_homogenize(&device->transform, &p2, &c2);
	transform_homogenize(&device->transform, &p3, &c3);

	// 纹理或者色彩绘制
	if (render_state & (RENDER_STATE_TEXTURE | RENDER_STATE_COLOR)) {
		vertex_t t1 = *v1, t2 = *v2, t3 = *v3;
		trapezoid_t traps[2];
		int n;

		t1.pos = p1; 
		t2.pos = p2;
		t3.pos = p3;
		t1.pos.w = c1.w;
		t2.pos.w = c2.w;
		t3.pos.w = c3.w;
		
		vertex_rhw_init(&t1);	// 初始化 w
		vertex_rhw_init(&t2);	// 初始化 w
		vertex_rhw_init(&t3);	// 初始化 w
		
		// 拆分三角形为0-2个梯形,并且返回可用梯形数量
		n = trapezoid_init_triangle(traps, &t1, &t2, &t3);

		if (n >= 1) device_render_trap(device, &traps[0]);
		if (n >= 2) device_render_trap(device, &traps[1]);
	}

	if (render_state & RENDER_STATE_WIREFRAME) {		// 线框绘制
		device_draw_line(device, (int)p1.x, (int)p1.y, (int)p2.x, (int)p2.y, device->foreground);
		device_draw_line(device, (int)p1.x, (int)p1.y, (int)p3.x, (int)p3.y, device->foreground);
		device_draw_line(device, (int)p3.x, (int)p3.y, (int)p2.x, (int)p2.y, device->foreground);
	}
}


//=====================================================================
// Win32 窗口及图形绘制:为 device 提供一个 DibSection 的 FB
//=====================================================================
int screen_w, screen_h, screen_exit = 0;
int screen_mx = 0, screen_my = 0, screen_mb = 0;
int screen_keys[512];	// 当前键盘按下状态
static HWND screen_handle = NULL;		// 主窗口 HWND
static HDC screen_dc = NULL;			// 配套的 HDC
static HBITMAP screen_hb = NULL;		// DIB
static HBITMAP screen_ob = NULL;		// 老的 BITMAP
unsigned char *screen_fb = NULL;		// frame buffer
long screen_pitch = 0;

int screen_init(int w, int h, const TCHAR *title);	// 屏幕初始化
int screen_close(void);								// 关闭屏幕
void screen_dispatch(void);							// 处理消息
void screen_update(void);							// 显示 FrameBuffer

// win32 event handler
static LRESULT screen_events(HWND, UINT, WPARAM, LPARAM);	

#ifdef _MSC_VER
#pragma comment(lib, "gdi32.lib")
#pragma comment(lib, "user32.lib")
#endif

// 初始化窗口并设置标题
int screen_init(int w, int h, const TCHAR *title) {
	WNDCLASS wc = { CS_BYTEALIGNCLIENT, (WNDPROC)screen_events, 0, 0, 0, 
		NULL, NULL, NULL, NULL, _T("SCREEN3.1415926") };
	BITMAPINFO bi = { { sizeof(BITMAPINFOHEADER), w, -h, 1, 32, BI_RGB, 
		w * h * 4, 0, 0, 0, 0 }  };
	RECT rect = { 0, 0, w, h };
	int wx, wy, sx, sy;
	LPVOID ptr;
	HDC hDC;

	screen_close();

	wc.hbrBackground = (HBRUSH)GetStockObject(BLACK_BRUSH);
	wc.hInstance = GetModuleHandle(NULL);
	wc.hCursor = LoadCursor(NULL, IDC_ARROW);
	if (!RegisterClass(&wc)) return -1;

	screen_handle = CreateWindow(_T("SCREEN3.1415926"), title,
		WS_OVERLAPPED | WS_CAPTION | WS_SYSMENU | WS_MINIMIZEBOX,
		0, 0, 0, 0, NULL, NULL, wc.hInstance, NULL);
	if (screen_handle == NULL) return -2;

	screen_exit = 0;
	hDC = GetDC(screen_handle);
	screen_dc = CreateCompatibleDC(hDC);
	ReleaseDC(screen_handle, hDC);

	screen_hb = CreateDIBSection(screen_dc, &bi, DIB_RGB_COLORS, &ptr, 0, 0);
	if (screen_hb == NULL) return -3;

	screen_ob = (HBITMAP)SelectObject(screen_dc, screen_hb);
	screen_fb = (unsigned char*)ptr;
	screen_w = w;
	screen_h = h;
	screen_pitch = w * 4;
	
	AdjustWindowRect(&rect, GetWindowLong(screen_handle, GWL_STYLE), 0);
	wx = rect.right - rect.left;
	wy = rect.bottom - rect.top;
	sx = (GetSystemMetrics(SM_CXSCREEN) - wx) / 2;
	sy = (GetSystemMetrics(SM_CYSCREEN) - wy) / 2;
	if (sy < 0) sy = 0;
	SetWindowPos(screen_handle, NULL, sx, sy, wx, wy, (SWP_NOCOPYBITS | SWP_NOZORDER | SWP_SHOWWINDOW));
	SetForegroundWindow(screen_handle);

	ShowWindow(screen_handle, SW_NORMAL);
	screen_dispatch();

	memset(screen_keys, 0, sizeof(int) * 512);
	memset(screen_fb, 0, w * h * 4);

	return 0;
}

int screen_close(void) {
	if (screen_dc) {
		if (screen_ob) { 
			SelectObject(screen_dc, screen_ob); 
			screen_ob = NULL; 
		}
		DeleteDC(screen_dc);
		screen_dc = NULL;
	}
	if (screen_hb) { 
		DeleteObject(screen_hb); 
		screen_hb = NULL; 
	}
	if (screen_handle) { 
		CloseWindow(screen_handle); 
		screen_handle = NULL; 
	}
	return 0;
}

static LRESULT screen_events(HWND hWnd, UINT msg, 
	WPARAM wParam, LPARAM lParam) {
	switch (msg) {
	case WM_CLOSE: screen_exit = 1; break;
	case WM_KEYDOWN: screen_keys[wParam & 511] = 1; break;
	case WM_KEYUP: screen_keys[wParam & 511] = 0; break;
	default: return DefWindowProc(hWnd, msg, wParam, lParam);
	}
	return 0;
}

void screen_dispatch(void) {
	MSG msg;
	while (1) {
		if (!PeekMessage(&msg, NULL, 0, 0, PM_NOREMOVE)) break;
		if (!GetMessage(&msg, NULL, 0, 0)) break;
		DispatchMessage(&msg);
	}
}

void screen_update(void) {
	HDC hDC = GetDC(screen_handle);
	BitBlt(hDC, 0, 0, screen_w, screen_h, screen_dc, 0, 0, SRCCOPY);
	ReleaseDC(screen_handle, hDC);
	screen_dispatch();
}


//=====================================================================
// 主程序
//=====================================================================
vertex_t mesh[8] = {
	{ {  1, -1,  1, 1 }, { 0, 0 }, { 1.0f, 0.2f, 0.2f }, 1 },
	{ { -1, -1,  1, 1 }, { 0, 1 }, { 0.2f, 1.0f, 0.2f }, 1 },
	{ { -1,  1,  1, 1 }, { 1, 1 }, { 0.2f, 0.2f, 1.0f }, 1 },
	{ {  1,  1,  1, 1 }, { 1, 0 }, { 1.0f, 0.2f, 1.0f }, 1 },
	{ {  1, -1, -1, 1 }, { 0, 0 }, { 1.0f, 1.0f, 0.2f }, 1 },
	{ { -1, -1, -1, 1 }, { 0, 1 }, { 0.2f, 1.0f, 1.0f }, 1 },
	{ { -1,  1, -1, 1 }, { 1, 1 }, { 1.0f, 0.3f, 0.3f }, 1 },
	{ {  1,  1, -1, 1 }, { 1, 0 }, { 0.2f, 1.0f, 0.3f }, 1 },
};

void draw_plane(device_t *device, int a, int b, int c, int d) {
	vertex_t p1 = mesh[a], p2 = mesh[b], p3 = mesh[c], p4 = mesh[d];
	p1.tc.u = 0, p1.tc.v = 0, p2.tc.u = 0, p2.tc.v = 1;
	p3.tc.u = 1, p3.tc.v = 1, p4.tc.u = 1, p4.tc.v = 0;
	device_draw_primitive(device, &p1, &p2, &p3);
	device_draw_primitive(device, &p3, &p4, &p1);
}

void draw_box(device_t *device, float theta) {
	matrix_t m;
	matrix_set_rotate(&m, -1, -0.5, 1, theta);
	device->transform.world = m;
	transform_update(&device->transform);
	draw_plane(device, 0, 1, 2, 3);
	draw_plane(device, 4, 5, 6, 7);
	draw_plane(device, 0, 4, 5, 1);
	draw_plane(device, 1, 5, 6, 2);
	draw_plane(device, 2, 6, 7, 3);
	draw_plane(device, 3, 7, 4, 0);
}

void camera_at_zero(device_t *device, float x, float y, float z) {
	point_t eye = { x, y, z, 1 }, at = { 0, 0, 0, 1 }, up = { 0, 0, 1, 1 };
	matrix_set_lookat(&device->transform.view, &eye, &at, &up);
	transform_update(&device->transform);
}

void init_texture(device_t *device) {
	static IUINT32 texture[256][256];
	int i, j;
	for (j = 0; j < 256; j++) {
		for (i = 0; i < 256; i++) {
			int x = i / 32, y = j / 32;
			texture[j][i] = ((x + y) & 1)? 0xffffff : 0x3fbcef;
		}
	}
	device_set_texture(device, texture, 256 * 4, 256, 256);
}

int main(void)
{
	device_t device;
	int states[] = { RENDER_STATE_TEXTURE, RENDER_STATE_COLOR, RENDER_STATE_WIREFRAME };
	int indicator = 0;
	int kbhit = 0;
	float alpha = 1;
	float pos = 3.5;

	TCHAR *title = _T("Mini3d (software render tutorial) - ")
		_T("Left/Right: rotation, Up/Down: forward/backward, Space: switch state");

	if (screen_init(800, 600, title)) 
		return -1;

	device_init(&device, 800, 600, screen_fb);
	camera_at_zero(&device, 3, 0, 0);

	init_texture(&device);
	device.render_state = RENDER_STATE_TEXTURE;

	while (screen_exit == 0 && screen_keys[VK_ESCAPE] == 0) {
		screen_dispatch();
		device_clear(&device, 1);
		camera_at_zero(&device, pos, 0, 0);
		
		if (screen_keys[VK_UP]) pos -= 0.01f;
		if (screen_keys[VK_DOWN]) pos += 0.01f;
		if (screen_keys[VK_LEFT]) alpha += 0.01f;
		if (screen_keys[VK_RIGHT]) alpha -= 0.01f;

		if (screen_keys[VK_SPACE]) {
			if (kbhit == 0) {
				kbhit = 1;
				if (++indicator >= 3) indicator = 0;
				device.render_state = states[indicator];
			}
		}	else {
			kbhit = 0;
		}

		draw_box(&device, alpha);
		screen_update();
		Sleep(1);
	}
	return 0;
}

相关标签: 3D固定软件渲染