【Scrapy 框架翻译】物品管道(Item Pipeline) 篇
程序员文章站
2022-03-02 22:44:56
...
版本号:Scrapy 2.4
文章目录
内容介绍
Pipeline用于处理通过Scrapy抓取来的数据。
主要用途:
- 清理HTML数据
- 验证抓取去的数据(检查项目是否包含某些字段)
- 检查副本(并删除)
- 将Scrapy的项存储在数据库中
pipeline基础方法
每个项目管道组件都是一个Python类
process_item(self, item, spider):pipeline处理定义的Items内容。
open_spider(self, spider):打开Spider时调用此方法。
close_spider(self, spider):关闭Spider时调用此方法。
from_crawler(cls, crawler):当创建一个pipline实例的时候该方法会被调用,该方法必须返回一个pipline实例对象,一般用于获取scrapy项目的配置setting中配置的值。
pipeline简单举例
抓取数据用于调整price属性示例
from itemadapter import ItemAdapter
from scrapy.exceptions import DropItem
class PricePipeline:
vat_factor = 1.15
def process_item(self, item, spider):
adapter = ItemAdapter(item)
if adapter.get('price'):
if adapter.get('price_excludes_vat'):
adapter['price'] = adapter['price'] * self.vat_factor
return item
else:
raise DropItem(f"Missing price in {item}")
数据写入JSON文件
import json
from itemadapter import ItemAdapter
class JsonWriterPipeline:
def open_spider(self, spider):
self.file = open('items.jl', 'w')
def close_spider(self, spider):
self.file.close()
def process_item(self, item, spider):
line = json.dumps(ItemAdapter(item).asdict()) + "\n"
self.file.write(line)
return item
数据写入写入MongoDB
import pymongo
from itemadapter import ItemAdapter
class MongoPipeline:
collection_name = 'scrapy_items'
def __init__(self, mongo_uri, mongo_db):
self.mongo_uri = mongo_uri
self.mongo_db = mongo_db
@classmethod
def from_crawler(cls, crawler):
return cls(
mongo_uri=crawler.settings.get('MONGO_URI'),
mongo_db=crawler.settings.get('MONGO_DATABASE', 'items')
)
def open_spider(self, spider):
self.client = pymongo.MongoClient(self.mongo_uri)
self.db = self.client[self.mongo_db]
def close_spider(self, spider):
self.client.close()
def process_item(self, item, spider):
self.db[self.collection_name].insert_one(ItemAdapter(item).asdict())
return item
页面截图
import hashlib
from urllib.parse import quote
import scrapy
from itemadapter import ItemAdapter
class ScreenshotPipeline:
"""
每个Scrapy项目使用Splash渲染屏幕截图的管道
"""
SPLASH_URL = "http://localhost:8050/render.png?url={}"
async def process_item(self, item, spider):
adapter = ItemAdapter(item)
encoded_item_url = quote(adapter["url"])
screenshot_url = self.SPLASH_URL.format(encoded_item_url)
request = scrapy.Request(screenshot_url)
response = await spider.crawler.engine.download(request, spider)
if response.status != 200:
# Error happened, return item.
return item
# Save screenshot to file, filename will be hash of url.
url = adapter["url"]
url_hash = hashlib.md5(url.encode("utf8")).hexdigest()
filename = f"{url_hash}.png"
with open(filename, "wb") as f:
f.write(response.body)
# Store filename in item.
adapter["screenshot_filename"] = filename
return item
数据重复过滤
from itemadapter import ItemAdapter
from scrapy.exceptions import DropItem
class DuplicatesPipeline:
def __init__(self):
self.ids_seen = set()
def process_item(self, item, spider):
adapter = ItemAdapter(item)
if adapter['id'] in self.ids_seen:
raise DropItem(f"Duplicate item found: {item!r}")
else:
self.ids_seen.add(adapter['id'])
return item
pipeline**方法
在settings.py中设置,否则抓取数据无法处理
ITEM_PIPELINES = {
'myproject.pipelines.PricePipeline': 300,
'myproject.pipelines.JsonWriterPipeline': 800,
}
上一篇: 请求、线程和方法执行
下一篇: Python网络爬虫