欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

洛谷P1337 [JSOI2004]平衡点 / 吊打XXX(模拟退火)

程序员文章站 2022-03-25 22:23:21
题目描述 如图:有n个重物,每个重物系在一条足够长的绳子上。每条绳子自上而下穿过桌面上的洞,然后系在一起。图中X处就是公共的绳结。假设绳子是完全弹性的(不会造成能量损失),桌子足够高(因而重物不会垂到地上),且忽略所有的摩擦。 问绳结X最终平衡于何处。 注意:桌面上的洞都比绳结X小得多,所以即使某个 ......

题目描述

如图:有n个重物,每个重物系在一条足够长的绳子上。每条绳子自上而下穿过桌面上的洞,然后系在一起。图中X处就是公共的绳结。假设绳子是完全弹性的(不会造成能量损失),桌子足够高(因而重物不会垂到地上),且忽略所有的摩擦。

问绳结X最终平衡于何处。

注意:桌面上的洞都比绳结X小得多,所以即使某个重物特别重,绳结X也不可能穿过桌面上的洞掉下来,最多是卡在某个洞口处。

洛谷P1337 [JSOI2004]平衡点 / 吊打XXX(模拟退火)

输入输出格式

输入格式:

 

文件的第一行为一个正整数n(1≤n≤1000),表示重物和洞的数目。接下来的n行,每行是3个整数:Xi.Yi.Wi,分别表示第i个洞的坐标以及第 i个重物的重量。(-10000≤x,y≤10000, 0<w≤1000 )

 

输出格式:

 

你的程序必须输出两个浮点数(保留小数点后三位),分别表示处于最终平衡状态时绳结X的横坐标和纵坐标。两个数以一个空格隔开。

 

输入输出样例

输入样例#1: 复制
3
0 0 1
0 2 1
1 1 1
输出样例#1: 复制
0.577 1.000

说明

[JSOI]

 

居然是道物理题QWQ...

我们所需要求的点,一定是总能量最小的点,这里的总能量,就是每个点的重力势能之和,如果让一个点的重力势能减小,那么拉它的绳子就应该尽量的长,那么在桌面上的绳子就应该尽量的短

因此我们需要求得一个点,使得$\sum_{1}^{n} d[i]*w[i]$最小($d[i]$表示该到平衡点的距离,$w[i]$表示该点的重量)

这样的话我们显然可以用模拟退火去求这个点

但此题正解并不是模拟退火,

用退火的时候大概有几个需要注意的地方

1.$\Delta T$要设的大一点,

2.移动的距离需要与温度有关

然后无脑退火就可以了

 

亲测时间种子用19260817可过

 

 

#include<cstdio>
#include<cmath>
#include<ctime>
#include<cstdlib> 
#define Rand(T) T*( (rand()<<1) - RAND_MAX )
const int MAXN = 1e6 + 10;
const double eps = 1e-16;
using namespace std;
inline int read() {
    char c = getchar();int x = 0, f = 1;
    while(c < '0' || c > '9') {if(c == '-') f = -1;c = getchar();}
    while(c >= '0' && c <= '9') {x = x * 10 + c - '0';c = getchar();}
    return x * f;
}
int N;
struct Point {
    double x, y, w;
}a[MAXN];
double AverX,AverY;
double calc(double x,double y) {
    double ans = 0;
    for(int i = 1; i <= N; i++)
        ans += sqrt((x - a[i].x) * (x - a[i].x) + (y - a[i].y) * (y - a[i].y)) * a[i].w;
    return ans;
}
int main() {
    srand(19260817);
    N = read();
    for(int i = 1; i <= N; i++) 
        scanf("%lf%lf%lf", &a[i].x, &a[i].y, &a[i].w),
        AverX += a[i].x, AverY += a[i].y;
    AverX /= N; AverY /= N;
    double Best = calc(AverX, AverY), BestX = AverX, BestY = AverY;
    double DelatT = 0.98;
    int Time = 10;
    while(Time--) {
        double Now = calc(AverX, AverY), NowX = AverX, NowY = AverY;
        for(double T = 1000000; T > eps; T *= DelatT) {
            double Wx = NowX + Rand(T), Wy = NowY + Rand(T);
            double Will = calc(Wx, Wy);
            if(Will < Best) Best = Will, BestX = Wx, BestY = Wy;
            if(Will < Now || ( exp((Will - Now) / T) * RAND_MAX < rand() ))
                Now = Will, NowX = Wx, NowY = Wy;
        }
    }
    printf("%.3lf %.3lf", BestX, BestY);
    return 0;
}