欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

网络流的最大流入门(从普通算法到dinic优化)

程序员文章站 2022-03-25 18:47:31
网络流(network flows)是一种类比水流的解决问题方法,与线性规划密切相关。网络流的理论和应用在不断发展。而我们今天要讲的就是网络流里的一种常见问题——最大流问题。 最大流问题(maximum flow problem),一种组合最优化问题,就是要讨论如何充分利用装置的能力,使得运输的流量 ......

网络流(network-flows)是一种类比水流的解决问题方法,与线性规划密切相关。网络流的理论和应用在不断发展。而我们今天要讲的就是网络流里的一种常见问题——最大流问题。

最大流问题(maximum flow problem),一种组合最优化问题,就是要讨论如何充分利用装置的能力,使得运输的流量最大,以取得最好的效果。求最大流的标号算法最早由福特和福克逊与与1956年提出,20世纪50年代福特(ford)、(fulkerson)建立的“网络流理论”,是网络应用的重要组成成分。

再解决这个问题前,我们要先弄懂一些定义

网络流的最大流入门(从普通算法到dinic优化)

网络流图是一张只有一个源点和汇点的有向图,而最大流就是求源点到汇点间的最大水流量,下图的问题就是一个最基本,经典的最大流问题

网络流的最大流入门(从普通算法到dinic优化)

二.流量,容量和可行流

对于弧(u,v)来说,流量就是其上流过的水量(我们通常用f(u,v)表示),而容量就是其上可流过的最大水量(我们通常用c(u,v)表示),只要满足f(u,v)<=c(u,v),我们就称流量f(u,v)是可行流(对于最大流问题而言,所有管道上的流量必须都是可行流)。

三.增广路

网络流的最大流入门(从普通算法到dinic优化)

如果一条路上的所有边均满足:

正向边: f(u,v)< c(u,v) ——– 反向边:f(u,v)> 0

假如有这么一条路,这条路从源点开始一直一段一段的连到了汇点,并且,这条路上的每一段都满足流量<容量,注意,是严格的<,而不是<=。那么,我们一定能找到这条路上的每一段的(容量-流量)的值当中的最小值delta。我们把这条路上每一段的流量都加上这个delta,一定可以保证这个流依然是可行流。这样我们就得到了一个更大的流,他的流量是之前的流量+delta,而这条路就叫做增广路. from 网络流(network flow)

则我们称这条路径为一条增广路径,简称增广路。

好了,弄懂了一些定义,接下来就可以介绍著名的ford-fulkerson算法了。

网络流的最大流入门(从普通算法到dinic优化)

如图所示,如果我们每次都找出一条增广路,只要这条增广路经过汇点,那说明此时水流还可以增加,增加的量为d(d=min(d,c(u,v)-f(u,v))或d=min(d,f(u,v)))。

我们可以这样理解:对于每一条正向边,他能添加的最大水流为c(u,v)-f(u,v)。而对于反向边来说,当正向边上的水流增多时,反向边自身的反向水流会减少,而其能减少的最多水量为f(u,v)。由于要保证添加水流之后,所有的f(u,v)都是可行流,所以我们取最小值。

增加之后,我们要更新流量,每条正向边+d,每条反向边-d即可。

既然这样,我们的思路就是:

1.找出一条增广路径 ——2.修改其上点的值——3.继续重复1,直至找不出增广路。则此时源点的汇出量即为所求的最大流。

网络流的最大流入门(从普通算法到dinic优化)

网络流的最大流入门(从普通算法到dinic优化)

网络流的最大流入门(从普通算法到dinic优化)

网络流的最大流入门(从普通算法到dinic优化)

网络流的最大流入门(从普通算法到dinic优化)

那么上代码:

#include<bits/stdc++.h>
#include<vector>
#define maxn 1200
#define inf 2e9
using namespace std;
int i,j,k,n,m,h,t,tot,ans,st,en;
struct node{
    int c,f;
}edge[maxn][maxn];
int flag[maxn],pre[maxn],alpha[maxn],q[maxn],v;
int read(){
    char c;int x;while(c=getchar(),c<'0'||c>'9');x=c-'0';
    while(c=getchar(),c>='0'&&c<='9') x=x*10+c-'0';return x;
}

void bfs(){
    memset(flag,0xff,sizeof(flag));memset(pre,0xff,sizeof(pre));memset(alpha,0xff,sizeof(alpha));
    flag[st]=0;pre[st]=0;alpha[st]=inf;h=0,t=1;q[t]=st;
    while(h<t){
        h++;v=q[h];
        for(int i=1;i<=n;i++){
            if(flag[i]==-1){
                if(edge[v][i].c<inf&&edge[v][i].f<edge[v][i].c){
                    flag[i]=0;pre[i]=v;alpha[i]=min(alpha[v],edge[v][i].c-edge[v][i].f);q[++t]=i;
                }
                else if(edge[i][v].c<inf&&edge[i][v].f>0){
                    flag[i]=0;pre[i]=-v;alpha[i]=min(alpha[v],edge[i][v].f);q[++t]=i;
                }
            }
        }
        flag[v]=1;
    }
}

void ford_fulkerson(){
    while(1){
        bfs();
        if(alpha[en]==0||flag[en]==-1){
            break;
        }
        int k1=en,k2=abs(pre[k1]);int a=alpha[en];
        while(1){
            if(edge[k2][k1].c<inf) edge[k2][k1].f+=a;
            else if(edge[k1][k2].c<inf) edge[k1][k2].f-=a;
            if(k2==st) break;
            k1=k2;k2=abs(pre[k1]);
        }
        alpha[en]=0;
    }
}

void flow(){
    int maxflow=0;
    for(int i=1;i<=n;i++)
      for(int j=1;j<=n;j++){
        if(i==st&&edge[i][j].f<inf) maxflow+=edge[i][j].f;
      }
    printf("%d",maxflow);
}

int main(){
    int u,v,c,f;
    n=read();m=read();st=read();en=read();
    for(int i=1;i<=n;i++)
      for(int j=1;j<=n;j++) edge[i][j].c=inf,edge[i][j].f=0;
    for(int i=1;i<=m;i++){
        u=read();v=read();c=read();
        edge[u][v].c=c;
    }
    ford_fulkerson();
    flow();
    return 0;
}