欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

win10+VS2015+opencv3.4.3调用darknet模型

程序员文章站 2022-03-25 13:45:00
...

opencv必须大于等于3.4.2

opencv在线文档:

https://docs.opencv.org/trunk/db/d30/classcv_1_1dnn_1_1Net.html#a98ed94cb6ef7063d3697259566da310b

参考文章:

https://blog.51cto.com/gloomyfish/2095418

https://blog.csdn.net/windfly_al/article/details/84873767

https://blog.csdn.net/shanglianlm/article/details/80030569

blobFromImage函数

  • 第一个参数,InputArray image,表示输入的图像,可以是opencv的mat数据类型。
  • 第二个参数,scalefactor,这个参数很重要的,如果训练时,是归一化到0-1之间,那么这个参数就应该为0.00390625f (1/256),否则为1.0
  • 第三个参数,size,应该与训练时的输入图像尺寸保持一致。
  • 第四个参数,mean,这个主要在caffe中用到,caffe中经常会用到训练数据的均值。tf中貌似没有用到均值文件。
  • 第五个参数,swapRB,是否交换图像第1个通道和最后一个通道的顺序。
  • 第六个参数,crop,如果为true,就是裁剪图像,如果为false,就是等比例放缩图像。
#include "stdafx.h"
#include <fstream>
#include <sstream>
#include <iostream>
#include <opencv2/dnn.hpp>
#include <opencv2/imgproc.hpp>

#include <opencv2/highgui.hpp>
#include<vector>


using namespace std;
using namespace cv;
using namespace dnn;

vector<string> classes;

vector<String> getOutputsNames(Net&net)
{
	static vector<String> names;
	if (names.empty())
	{
		//返回加载模型中所有层的输入和输出形状(shape)
		vector<int> outLayers = net.getUnconnectedOutLayers();

		//get the names of all the layers in the network
		vector<String> layersNames = net.getLayerNames();

		// Get the names of the output layers in names
		names.resize(outLayers.size());
		for (size_t i = 0; i < outLayers.size(); ++i)
			names[i] = layersNames[outLayers[i] - 1];
	}
	return names;
}
void drawPred(int classId, float conf, int left, int top, int right, int bottom, Mat& frame)
{
	//Draw a rectangle displaying the bounding box
	rectangle(frame, Point(left, top), Point(right, bottom), Scalar(255, 178, 50), 3);

	//Get the label for the class name and its confidence
	string label = format("%.5f", conf);
	if (!classes.empty())
	{
		CV_Assert(classId < (int)classes.size());
		label = classes[classId] + ":" + label;
	}

	//Display the label at the top of the bounding box
	int baseLine;
	Size labelSize = getTextSize(label, FONT_HERSHEY_SIMPLEX, 0.5, 1, &baseLine);
	top = max(top, labelSize.height);
	rectangle(frame, Point(left, top - round(1.5*labelSize.height)), Point(left + round(1.5*labelSize.width), top + baseLine), Scalar(255, 255, 255), FILLED);
	putText(frame, label, Point(left, top), FONT_HERSHEY_SIMPLEX, 0.75, Scalar(0, 0, 0), 1);
}

void postprocess(Mat& frame, const vector<Mat>& outs, float confThreshold, float nmsThreshold)
{
	vector<int> classIds;
	vector<float> confidences;
	vector<Rect> boxes;

	for (size_t i = 0; i < outs.size(); ++i)
	{
		// Scan through all the bounding boxes output from the network and keep only the
		// ones with high confidence scores. Assign the box's class label as the class
		// with the highest score for the box.
		float* data = (float*)outs[i].data;
		for (int j = 0; j < outs[i].rows; ++j, data += outs[i].cols)
		{
			Mat scores = outs[i].row(j).colRange(5, outs[i].cols);
			Point classIdPoint;
			double confidence;
			// Get the value and location of the maximum score
			minMaxLoc(scores, 0, &confidence, 0, &classIdPoint);
			if (confidence > confThreshold)
			{
				int centerX = (int)(data[0] * frame.cols);
				int centerY = (int)(data[1] * frame.rows);
				int width = (int)(data[2] * frame.cols);
				int height = (int)(data[3] * frame.rows);
				int left = centerX - width / 2;
				int top = centerY - height / 2;

				classIds.push_back(classIdPoint.x);
				confidences.push_back((float)confidence);
				boxes.push_back(Rect(left, top, width, height));
			}
		}
	}

	// Perform non maximum suppression to eliminate redundant overlapping boxes with
	// lower confidences
	vector<int> indices;
	NMSBoxes(boxes, confidences, confThreshold, nmsThreshold, indices);
	for (size_t i = 0; i < indices.size(); ++i)
	{
		int idx = indices[i];
		Rect box = boxes[idx];
		drawPred(classIds[idx], confidences[idx], box.x, box.y,
			box.x + box.width, box.y + box.height, frame);
	}
}

int main()
{
	
	
	//1.加载网络模型
	String model_def = "/home/oliver/darknet-master/cfg/yolov3.cfg";
	String weights = "/home/oliver/darknet-master/yolov3.weights";
	Net net = readNetFromDarknet(model_def, weights);
	if (net.empty())
	{
		printf("Could not load net...\n");
		return 0;
	}

	//2.加载分类信息
	/*vector<string> classNamesVec;
	ifstream classNamesFile("D:/vcprojects/images/dnn/yolov2-tiny-voc/voc.names");
	if (classNamesFile.is_open())
	{
		string className = "";
		while (std::getline(classNamesFile, className))
			classNamesVec.push_back(className);
	}*/
	string names_file = "/home/oliver/darknet-master/data/coco.names";
	ifstream ifs(names_file.c_str());
	string line;
	while (getline(ifs, line)) classes.push_back(line);

	// 3.加载图像
	Mat frame = imread("D:/vcprojects/images/fastrcnn.jpg");
	Mat inputBlob = blobFromImage(frame, 1 / 255.F, Size(416, 416), Scalar(), true, false);
	net.setInput(inputBlob, "data");

	string img_path = "/home/oliver/darknet/data/dog.jpg";


	int in_w, in_h;
	double thresh = 0.5;
	double nms_thresh = 0.25;
	in_w = in_h = 608;

	/*要求网络在支持的地方使用特定的计算后端
	*如果opencv是用intel的推理引擎库编译的,那么dnn_backend_default意味着dnn_backend_interrusion_引擎
	*否则等于dnn_backend_opencv。
	*/
	net.setPreferableBackend(DNN_BACKEND_OPENCV);
	//要求网络对特定目标设备进行计算
	net.setPreferableTarget(DNN_TARGET_CPU);


	//read image and forward
	VideoCapture capture(2);// VideoCapture:OENCV中新增的类,捕获视频并显示出来
	while (1)
	{
		Mat frame, blob;
		capture >> frame;


		blobFromImage(frame, blob, 1 / 255.0, Size(in_w, in_h), Scalar(), true, false);

		vector<Mat> mat_blob;
		imagesFromBlob(blob, mat_blob);

		//Sets the input to the network
		net.setInput(blob);

		// Runs the forward pass to get output of the output layers
		vector<Mat> outs;
		net.forward(outs, getOutputsNames(net));

		postprocess(frame, outs, thresh, nms_thresh);

		vector<double> layersTimes;
		double freq = getTickFrequency() / 1000;
		double t = net.getPerfProfile(layersTimes) / freq;
		string label = format("Inference time for a frame : %.2f ms", t);
		putText(frame, label, Point(0, 15), FONT_HERSHEY_SIMPLEX, 0.5, Scalar(0, 0, 255));

		imshow("res", frame);

		waitKey(10);
	}
	return 0;
}

 

相关标签: s