欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

Python+Opencv实现图像匹配功能(模板匹配)

程序员文章站 2022-03-25 13:42:32
本文实例为大家分享了python+opencv实现图像匹配功能的具体代码,供大家参考,具体内容如下1、原理简单来说,模板匹配就是拿一个模板(图片)在目标图片上依次滑动,每次计算模板与模板下方的子图的相...

本文实例为大家分享了python+opencv实现图像匹配功能的具体代码,供大家参考,具体内容如下

1、原理

简单来说,模板匹配就是拿一个模板(图片)在目标图片上依次滑动,每次计算模板与模板下方的子图的相似度,最后就计算出了非常多的相似度;
如果只是单个目标的匹配,那只需要取相似度最大值所在的位置就可以得出匹配位置;
如果要匹配多个目标,那就设定一个阈值,就是说,只要相似度大于比如0.8,就认为是要匹配的目标。

Python+Opencv实现图像匹配功能(模板匹配)

1.1 相似度度量指标

  • 差值平方和匹配 cv_tm_sqdiff
  • 标准化差值平方和匹配 cv_tm_sqdiff_normed
  • 相关匹配 cv_tm_ccorr
  • 标准相关匹配 cv_tm_ccorr_normed
  • 相关匹配 cv_tm_ccoeff
  • 标准相关匹配 cv_tm_ccoeff_normed

1.2 计算步骤

有一张模板图像templa和一张较大的待搜索图像image,模板匹配是一种用于在较大图像中搜索和查找模板图像位置的方法。
具体就是将模板图​​像滑动到输入图像上(就像在卷积操作一样),然后在模板图像下比较模板和输入图像的子图的相似度。
它返回一个灰度图像,其中每个像素表示该像素的邻域与模板匹配的相似度。如果输入图像的大小(wxh)和模板图像的大小(wxh),则输出图像的大小将为(w-w+ 1,h-h + 1)。 获得相似度图像之后,在其上查找最大相似度所在的像素。将其作为匹配区域矩形的左上角,并以(w,h)作为矩形的宽度和高度。该矩形是与模板匹配的区域。

2、代码实现

2.1 单模板匹配单个目标

代码如下:

# 相关系数匹配方法: cv2.tm_ccoeff
res = cv2.matchtemplate(img, template, cv2.tm_ccoeff)
min_val, max_val, min_loc, max_loc = cv2.minmaxloc(res)

left_top = max_loc   # 左上角
right_bottom = (left_top[0] + w, left_top[1] + h)   # 右下角
cv2.rectangle(img, left_top, right_bottom, 255, 2)  # 画出矩形位置

plt.subplot(121), plt.imshow(res, cmap='gray')
plt.title('matching result'), plt.xticks([]), plt.yticks([])

plt.subplot(122), plt.imshow(img, cmap='gray')
plt.title('detected point'), plt.xticks([]), plt.yticks([])
plt.show()

2.2 单模板匹配多个目标

目标照片:mario.jpg

Python+Opencv实现图像匹配功能(模板匹配)

模板照片:mario_coin.jpg

Python+Opencv实现图像匹配功能(模板匹配)

代码如下:

import cv2
import numpy as np
img_rgb = cv2.imread('mario.jpg')
img_gray = cv2.cvtcolor(img_rgb, cv2.color_bgr2gray)
template = cv2.imread('mario_coin.jpg', 0)
h, w = template.shape[:2]
 
res = cv2.matchtemplate(img_gray, template, cv2.tm_ccoeff_normed)
threshold = 0.8
# 取匹配程度大于%80的坐标
loc = np.where(res >= threshold)
#np.where返回的坐标值(x,y)是(h,w),注意h,w的顺序
for pt in zip(*loc[::-1]):  
    bottom_right = (pt[0] + w, pt[1] + h)
    cv2.rectangle(img_rgb, pt, bottom_right, (0, 0, 255), 2)
cv2.imwrite("img.jpg",img_rgb)
cv2.imshow('img', img_rgb)
cv2.waitkey(0)

检测结果如下:

Python+Opencv实现图像匹配功能(模板匹配)

3、算法精度优化

  • 多尺度模板匹配
  • 旋转目标模板匹配
  • 非极大值抑制

通过上图可以看到对同一个图有多个框标定,需要去重,只需要保留一个

解决方案:对于使用同一个待检区域使用nms(非极大值抑制)进行去掉重复的矩形框

nms 原理

对于bounding box的列表b及其对应的置信度s,采用下面的计算方式。选择具有最大score的检测框m,将其从b集合中移除并加入到最终的检测结果d中。通常将b中剩余检测框中与m的iou大于阈值nt的框从b中移除,重复这个过程,直到b为空。

ps. 重叠率(重叠区域面积比例iou)常用的阈值是 0.3 ~ 0.5.

代码如下:

import cv2
import time
import numpy as np
 
def py_nms(dets, thresh):
    """pure python nms baseline."""
    #x1、y1、x2、y2、以及score赋值
    # (x1、y1)(x2、y2)为box的左上和右下角标
    x1 = dets[:, 0]
    y1 = dets[:, 1]
    x2 = dets[:, 2]
    y2 = dets[:, 3]
    scores = dets[:, 4]
    #每一个候选框的面积
    areas = (x2 - x1 + 1) * (y2 - y1 + 1)
    #order是按照score降序排序的
    order = scores.argsort()[::-1]
    # print("order:",order)
 
    keep = []
    while order.size > 0:
        i = order[0]
        keep.append(i)
        #计算当前概率最大矩形框与其他矩形框的相交框的坐标,会用到numpy的broadcast机制,得到的是向量
        xx1 = np.maximum(x1[i], x1[order[1:]])
        yy1 = np.maximum(y1[i], y1[order[1:]])
        xx2 = np.minimum(x2[i], x2[order[1:]])
        yy2 = np.minimum(y2[i], y2[order[1:]])
        #计算相交框的面积,注意矩形框不相交时w或h算出来会是负数,用0代替
        w = np.maximum(0.0, xx2 - xx1 + 1)
        h = np.maximum(0.0, yy2 - yy1 + 1)
        inter = w * h
        #计算重叠度iou:重叠面积/(面积1+面积2-重叠面积)
        ovr = inter / (areas[i] + areas[order[1:]] - inter)
        #找到重叠度不高于阈值的矩形框索引
        inds = np.where(ovr <= thresh)[0]
        # print("inds:",inds)
        #将order序列更新,由于前面得到的矩形框索引要比矩形框在原order序列中的索引小1,所以要把这个1加回来
        order = order[inds + 1]
    return keep
 
def template(img_gray,template_img,template_threshold):
    '''
    img_gray:待检测的灰度图片格式
    template_img:模板小图,也是灰度化了
    template_threshold:模板匹配的置信度
    '''
 
    h, w = template_img.shape[:2]
    res = cv2.matchtemplate(img_gray, template_img, cv2.tm_ccoeff_normed)
    start_time = time.time()
    loc = np.where(res >= template_threshold)#大于模板阈值的目标坐标
    score = res[res >= template_threshold]#大于模板阈值的目标置信度
    #将模板数据坐标进行处理成左上角、右下角的格式
    xmin = np.array(loc[1])
    ymin = np.array(loc[0])
    xmax = xmin+w
    ymax = ymin+h
    xmin = xmin.reshape(-1,1)#变成n行1列维度
    xmax = xmax.reshape(-1,1)#变成n行1列维度
    ymax = ymax.reshape(-1,1)#变成n行1列维度
    ymin = ymin.reshape(-1,1)#变成n行1列维度
    score = score.reshape(-1,1)#变成n行1列维度
    data_hlist = []
    data_hlist.append(xmin)
    data_hlist.append(ymin)
    data_hlist.append(xmax)
    data_hlist.append(ymax)
    data_hlist.append(score)
    data_hstack = np.hstack(data_hlist)#将xmin、ymin、xmax、yamx、scores按照列进行拼接
    thresh = 0.3#nms里面的iou交互比阈值
 
    keep_dets = py_nms(data_hstack, thresh)
    print("nms time:",time.time() - start_time)#打印数据处理到nms运行时间
    dets = data_hstack[keep_dets]#最终的nms获得的矩形框
    return dets
if __name__ == "__main__":
    img_rgb = cv2.imread('mario.jpg')#需要检测的图片
    img_gray = cv2.cvtcolor(img_rgb, cv2.color_bgr2gray)#转化成灰色
    template_img = cv2.imread('mario_coin.jpg', 0)#模板小图
    template_threshold = 0.8#模板置信度
    dets = template(img_gray,template_img,template_threshold)
    count = 0
    for coord in dets:
        cv2.rectangle(img_rgb, (int(coord[0]),int(coord[1])), (int(coord[2]),int(coord[3])), (0, 0, 255), 2)
    cv2.imwrite("result.jpg",img_rgb)

检测结果如下:

Python+Opencv实现图像匹配功能(模板匹配)

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。