欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

时间复杂度&空间复杂度分析

程序员文章站 2022-03-25 13:13:50
...

转发:https://blog.csdn.net/LF_2016/article/details/52453212

时间复杂度:

  一般情况下,算法中基本操作重复执行的次数是问题规模n的某个函数f(n),进而分析f(n)随n的变化情况并确定T(n)的数量级。这里用"O"来表示数量级,给出算法的时间复杂度。

                     T(n)=O(f(n));

  它表示随着问题规模的n的增大,算法的执行时间的增长率和f(n)的增长率相同,这称作算法的渐进时间复杂度,简称时间复杂度。而我们一般讨论的是最坏时间复杂度,这样做的原因是:最坏情况下的时间复杂度是算法在任何输入实例上运行时间的上界,分析最坏的情况以估算算法指向时间的一个上界。

 

时间复杂度的分析方法:

1、时间复杂度就是函数中基本操作所执行的次数

2、一般默认的是最坏时间复杂度,即分析最坏情况下所能执行的次数

3、忽略掉常数项

4、关注运行时间的增长趋势,关注函数式中增长最快的表达式,忽略系数

5、计算时间复杂度是估算随着n的增长函数执行次数的增长趋势

6、递归算法的时间复杂度为:递归总次数 * 每次递归中基本操作所执行的次数

 

    常用的时间复杂度有以下七种,算法时间复杂度依次增加:O(1)常数型、O(log2 n)对数型、O(n)线性型、O(nlog2n)二维型、O(n^2)平方型、O(n^3)立方型、O(2^n)指数型.

时间复杂度&空间复杂度分析

 

 

空间复杂度:

  算法的空间复杂度并不是计算实际占用的空间,而是计算整个算法的辅助空间单元的个数,与问题的规模没有关系。算法的空间复杂度S(n)定义为该算法所耗费空间的数量级。

  S(n)=O(f(n))  若算法执行时所需要的辅助空间相对于输入数据量n而言是一个常数,则称这个算法的辅助空间为O(1); 

  递归算法的空间复杂度:递归深度N*每次递归所要的辅助空间, 如果每次递归所需的辅助空间是常数,则递归的空间复杂度是 O(N).

例:

1、求二分法的时间复杂度和空间复杂度。

非递归:

template<typename T>
T* BinarySearch(T* array,int number,const T& data)
{
       assert(number>=0);
       int left = 0;
       int right = number-1;
       while (right >= left)
       {
              int mid = (left&right) + ((left^right)>>1);
              if (array[mid] > data)
              {
                     right = mid - 1;
              }
              else if (array[mid] < data)
              {
                     left = mid + 1;
              }
              else
              {
                     return (array + mid);
              }
       }
       return NULL;
}

分析:

时间复杂度&空间复杂度分析

 

循环的基本次数是log2 N,所以:

时间复杂度是O(log2 N);

由于辅助空间是常数级别的所以:

空间复杂度是O(1);

 

递归:

template<typename T>
T* BinarySearch(T* left,T* right,const T& data)
{
       assert(left);
       assert(right);
       if (right >=left)
       {
              T* mid =left+(right-left)/2;
              if (*mid == data)
                     return mid;
              else
                     return *mid > data ? BinarySearch(left, mid - 1, data) : BinarySearch(mid + 1, right, data);
       }
       else
       {
              return NULL;
       }
}

时间复杂度&空间复杂度分析

 

递归的次数和深度都是log2 N,每次所需要的辅助空间都是常数级别的:

时间复杂度:O(log2 N)

空间复杂度:O(log2N )

 

2、斐波那契数列的时间和空间复杂度

//递归情况下的斐波那契数列

long long Fib(int n)
{
       assert(n >= 0);
       return n<2 ? n : Fib(n - 1) + Fib(n-2);
}

时间复杂度&空间复杂度分析

递归的时间复杂度是:  递归次数*每次递归中执行基本操作的次数

所以时间复杂度是: O(2^N)

递归的空间复杂度是:  递归的深度*每次递归所需的辅助空间的个数

所以空间复杂度是:O(N)

 

//求前n项中每一项的斐波那契数列的值

long long *Fib(int  n)
{
       assert(n>=0);
       long long *array = new long long[n + 1];
       array[0] = 0;
       if (n > 0)
       {
              array[1] = 1;
       }
       for (int i = 2; i <n+1; i++)
       {
              array[i] = array[i - 1] + array[i - 2];
       }
       return array;
}

循环的基本操作次数是n-1,辅助空间是n+1,所以:

时间复杂度O(n)

空间复杂度O(n)

//非递归

long long Fib(int n)
{
       assert(n >= 0);
       long long first=0,second=1;
       for (int i = 2; i <= n; i++)
       {
              first = first^second;
              second = first^second;
              first = first^second;
              second = first + second;
       }
       return second;
}

循环的基本次数是n-1,所用的辅助空间是常数级别的:

时间复杂度:O(n)

空间复杂度:O(1)