欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

百度AI开放平台——简易人脸识别java版

程序员文章站 2022-03-25 12:23:51
...

百度AI开放平台——简易人脸识别java版

准备工作

1、百度AI开发平台账号和人脸识别相关功能
2、一张人脸照片

流程:

1、页面调用摄像头拍照获取当前使用者照片,传入后台保存
2、利用事先保存的图片和前台传入的图片进行对比,返回一个匹配值

项目结构和代码:

百度AI开放平台——简易人脸识别java版

  1. FaceMatch.java(百度AI账号配置和进行人脸匹配的类)
package home.face.controller;



import home.face.utils.Base64Util;
import home.face.utils.FileUtil;
import home.face.utils.HttpUtil;
import net.sf.json.JSONArray;
import net.sf.json.JSONObject;

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.net.HttpURLConnection;
import java.net.URL;
import java.util.List;
import java.util.Map;

/**
* 人脸对比
*/
public class FaceMatch {

    /**
     * 百度云AK
     */
    private static final String API_KEY = "API_KEY";
    /**
     * 百度云SK
     */
    private static final String SECRET_KEY = "SECRET_KEY";
    /**
     * 获取access_token的接口地址
     */
    private static final String AUTH_HOST = "https://aip.baidubce.com/oauth/2.0/token?";
    /**
     * 进行人脸探测的接口地址
     */
    private static final String DETECT_HOST = "https://aip.baidubce.com/rest/2.0/face/v3/detect";



    /**
    * 重要提示代码中所需工具类
    * FileUtil,Base64Util,HttpUtil,GsonUtils请从
    * https://ai.baidu.com/file/658A35ABAB2D404FBF903F64D47C1F72
    * https://ai.baidu.com/file/C8D81F3301E24D2892968F09AE1AD6E2
    * https://ai.baidu.com/file/544D677F5D4E4F17B4122FBD60DB82B3
    * https://ai.baidu.com/file/470B3ACCA3FE43788B5A963BF0B625F3
    * 下载
    */
    public static String faceMatch() {
        // 请求url
        String url = "https://aip.baidubce.com/rest/2.0/face/v3/match";
        String score = "0";
        try {
        	JSONArray jsonArray = new JSONArray();

        	JSONObject json  = new JSONObject();
        	json.put("image_type", "BASE64");
        	byte[] imgData = FileUtil.readFileByBytes("/Users/miyakohiroshi/Desktop/picture.jpg");
            String imgStr = Base64Util.encode(imgData);
            json.put("image", imgStr);


            JSONObject json1  = new JSONObject();
        	json1.put("image_type", "BASE64");
        	byte[] imgData1 = FileUtil.readFileByBytes("/Users/miyakohiroshi/Desktop/pingchang.jpg");
            String imgStr1 = Base64Util.encode(imgData1);
            json1.put("image", imgStr1);

            jsonArray.add(json1);
            jsonArray.add(json);

            // 注意这里仅为了简化编码每一次请求都去获取access_token,线上环境access_token有过期时间, 客户端可自行缓存,过期后重新获取。
            String accessToken = getAuth();

            String result = HttpUtil.post(url, accessToken, "application/json", jsonArray.toString());
//            System.out.println(result);
            JSONObject resultString = JSONObject.fromObject(result);

            if(resultString.has("result") && JSONObject.fromObject(result).getInt("error_code") == 0){
            	score = JSONObject.fromObject(resultString.getString("result")).getString("score");
            	System.out.println("===="+score);
            }
            return score;
        } catch (Exception e) {
            e.printStackTrace();
        }
        return score;
    }

    /**
     * 获取权限token
     * @return
     */
    public static String getAuth(){
        // 获取token地址
        String getAccessTokenUrl = AUTH_HOST
                // 1. grant_type为固定参数
                + "grant_type=client_credentials"
                // 2. 官网获取的 API Key
                + "&client_id=" + API_KEY
                // 3. 官网获取的 Secret Key
                + "&client_secret=" + SECRET_KEY;
        JSONObject jsonObject = null;
        BufferedReader in = null;
        try {
            URL realUrl = new URL(getAccessTokenUrl);
            HttpURLConnection connection = (HttpURLConnection) realUrl.openConnection();
            connection.setRequestMethod("GET");
            connection.connect();
            // 获取所有响应头字段
            Map<String, List<String>> map = connection.getHeaderFields();
            // 遍历所有的响应头字段
            /*for (String key : map.keySet()) {
                System.err.println(key + "--->" + map.get(key));
            }*/
            // 定义 BufferedReader输入流来读取URL的响应
            in = new BufferedReader(new InputStreamReader(connection.getInputStream()));
            String result = "";
            String line;
            while ((line = in.readLine()) != null) {
                result += line;
            }
            /**
             * 返回结果示例
             */
            jsonObject = JSONObject.fromObject(result);
            String access_token = jsonObject.getString("access_token");
            return access_token;
        } catch (Exception e) {
            e.printStackTrace();
        } finally {
            if(in!=null){
                try {
                    in.close();
                } catch (IOException e) {
                    e.printStackTrace();
                }
            }
        }
        return null;
    }

    public static void main(String[] args) {
        FaceMatch.faceMatch();
    }
}
  1. TestController.java(进行图片保存和返回结果的类)
package home.face.controller;

import org.springframework.stereotype.Controller;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.ResponseBody;
import org.springframework.web.bind.annotation.RestController;
import org.springframework.web.servlet.ModelAndView;
import sun.misc.BASE64Decoder;
import sun.misc.BASE64Encoder;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import java.io.*;

@RestController
@RequestMapping("Test")
public class TestController {


        //base64字符串转化成图片
        @RequestMapping("/test")
        public  String GenerateImage(String imgStr, HttpServletRequest req, HttpServletResponse res)
        {
            String modelInfo = "人脸识别的阈值是80;你的识别结果是";
            String origin = req.getHeader("Origin");
            if( null != origin) {
                res.addHeader("Access-Control-Allow-Origin", origin);
            }

            //对字节数组字符串进行Base64解码并生成图片
            if (imgStr == null) //图像数据为空
                return modelInfo+"0";
            BASE64Decoder decoder = new BASE64Decoder();
            imgStr = imgStr.split(",")[1];
            try
            {
                //Base64解码
                byte[] b = decoder.decodeBuffer(imgStr);
                for(int i=0;i<b.length;++i)
                {
                    if(b[i]<0)
                    {//调整异常数据
                        b[i]+=256;
                    }
                }
                //生成jpeg图片
                String imgFilePath = "/Users/miyakohiroshi/Desktop/picture.jpg";//新生成的图片
                OutputStream out = new FileOutputStream(imgFilePath);
                out.write(b);
                out.flush();
                out.close();
                String socre = FaceMatch.faceMatch();

                return modelInfo+socre;
            }
            catch (Exception e)
            {
                return modelInfo+"0";
            }
        }

}

  1. cutpicture.html(进行图片获取和结果返回)
<!doctype html>
<html lang="en">
<head>
    <title>GET VIDEO</title>
    <meta charset="utf-8">
</head>
<body>
<input type="button" title="开启摄像头" value="开启摄像头" οnclick="getMedia()" />
<video id="video" width="500px" height="500px" autoplay="autoplay"></video>
<canvas id="canvas" width="500px" height="500px"></canvas>
<button id="snap" οnclick="takePhoto()">拍照</button>
<script src="http://libs.baidu.com/jquery/2.0.0/jquery.js"></script>>
<script>
    //获得video摄像头区域
    var video = document.getElementById("video");
    function getMedia() {
        var constraints = {
            video: {width: 500, height: 500},
            audio: true
        };
       
        var promise = navigator.mediaDevices.getUserMedia(constraints);
        promise.then(function (MediaStream) {
            video.srcObject = MediaStream;
            video.play();
        }).catch(function (PermissionDeniedError) {
            console.log(PermissionDeniedError);
        })
    }
    function takePhoto() {
        //获得Canvas对象
        var canvas = document.getElementById("canvas");
        var ctx = canvas.getContext('2d');
        ctx.drawImage(video, 0, 0, 500, 500);
        var url = canvas.toDataURL('image/jpeg',1);

        saveimage(url);

    }

    function saveimage(url){
        $.ajax({
            url: "http://localhost:8080/Test/test",
            type: "POST",
            data:{
                imgStr:url
            },

            success: function (data) {
                console.log("success")
                alert(data)
            }
        });

    }

</script>
</body>
</html>
  1. application.properties(配置文件)
server.port=8080
spring.thymeleaf.mode=HTML
spring.thymeleaf.prefix=classpath:/templates/
spring.thymeleaf.suffix=.html
  1. pom.xml
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 https://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>
    <parent>
        <groupId>org.springframework.boot</groupId>
        <artifactId>spring-boot-starter-parent</artifactId>
        <version>2.2.1.RELEASE</version>
        <relativePath/> <!-- lookup parent from repository -->
    </parent>
    <groupId>Home</groupId>
    <artifactId>face</artifactId>
    <version>0.0.1-SNAPSHOT</version>
    <name>face</name>
    <description>Demo project for Spring Boot</description>

    <properties>
        <java.version>1.8</java.version>
    </properties>

    <dependencies>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-web</artifactId>
        </dependency>

        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-test</artifactId>
            <scope>test</scope>
            <exclusions>
                <exclusion>
                    <groupId>org.junit.vintage</groupId>
                    <artifactId>junit-vintage-engine</artifactId>
                </exclusion>
            </exclusions>
        </dependency>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-thymeleaf</artifactId>
        </dependency>
        <dependency>
            <groupId>net.sf.json-lib</groupId>
            <artifactId>json-lib</artifactId>
            <version>2.4</version>
            <classifier>jdk15</classifier>
        </dependency>
        <dependency>
            <groupId>com.google.code.gson</groupId>
            <artifactId>gson</artifactId>
            <version>2.8.6</version>
        </dependency>
    </dependencies>

    <build>
        <plugins>
            <plugin>
                <groupId>org.springframework.boot</groupId>
                <artifactId>spring-boot-maven-plugin</artifactId>
            </plugin>
        </plugins>
    </build>
</project>

最终效果:

百度AI开放平台——简易人脸识别java版

注:

1、页面获取的人脸图片存放地址/Users/miyakohiroshi/Desktop/picture.jpg
2、事先准备的人脸地址/Users/miyakohiroshi/Desktop/pingchang.jpg
3、百度人脸匹配推荐的阈值是80