欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

MySQL数据优化-多层索引

程序员文章站 2022-03-24 10:49:38
目录一、多层索引1.创建2.设置索引的名称3.from_arrays( )-from_tuples()4.笛卡儿积方式二、多层索引操作1.series2.dataframe3.交换索引4.索引排序5....

一、多层索引

1.创建

环境:jupyter

import numpy as np
import pandas as pd
a=pd.dataframe(np.random.random(size=(4,4)),index=[['上半年','上半年','下半年','下半年'],
                                                    ['一季度','二季度','三季度','四季度']],
              columns=[['蔬菜','蔬菜','肉类','肉类'],['胡萝卜','白菜','牛肉','猪肉']])
display(a)


MySQL数据优化-多层索引

2.设置索引的名称

import numpy as np
import pandas as pd
a=pd.dataframe(np.random.random(size=(4,4)),index=[['上半年','上半年','下半年','下半年'],
                                                    ['一季度','二季度','三季度','四季度']],
              columns=[['蔬菜','蔬菜','肉类','肉类'],['胡萝卜','白菜','牛肉','猪肉']])
a.index.names=['年度','季度']
a.columns.names=['大类','小类']
display(a)


MySQL数据优化-多层索引

3.from_arrays( )-from_tuples()

import numpy as np
import pandas as pd
index=pd.multiindex.from_arrays([['上半年','上半年','下半年','下半年'],['一季度','二季度','三季度','四季度']])
columns=pd.multiindex.from_tuples([('蔬菜','胡萝卜'),('蔬菜','白菜'),('肉类','牛肉'),('肉类','猪肉')])
a=pd.dataframe(np.random.random(size=(4,4)),index=index,columns=columns)
display(a)


MySQL数据优化-多层索引

4.笛卡儿积方式

from_product() 局限性较大

import pandas as pd
index = pd.multiindex.from_product([['上半年','下半年'],['蔬菜','肉类']])
a=pd.dataframe(np.random.random(size=(4,4)),index=index)
display(a)


MySQL数据优化-多层索引

二、多层索引操作

1.series

import pandas as pd
a=pd.series([1,2,3,4],index=[['a','a','b','b'],['c','d','e','f']])
print(a)
print('---------------------')
print(a.loc['a'])
print('---------------------')
print(a.loc['a','c'])


MySQL数据优化-多层索引

import pandas as pd
a=pd.series([1,2,3,4],index=[['a','a','b','b'],['c','d','e','f']])
print(a)
print('---------------------')
print(a.iloc[0])
print('---------------------')
print(a.loc['a':'b'])
print('---------------------')
print(a.iloc[0:2])


MySQL数据优化-多层索引

2.dataframe

import numpy as np
import pandas as pd
a=pd.dataframe(np.random.random(size=(4,4)),index=[['上半年','上半年','下半年','下半年'],
                                                    ['一季度','二季度','三季度','四季度']],
              columns=[['蔬菜','蔬菜','肉类','肉类'],['胡萝卜','白菜','牛肉','猪肉']])
print(a)
print('--------------------')
print(a.loc['上半年','二季度'])
print('--------------------')
print(a.iloc[0])


MySQL数据优化-多层索引

3.交换索引

swaplevel( )

import numpy as np
import pandas as pd
a=pd.dataframe(np.random.random(size=(4,4)),index=[['2021','2021','2022','2022'],
                                                    ['一季度','二季度','三季度','四季度']],
              columns=[['蔬菜','蔬菜','肉类','肉类'],['胡萝卜','白菜','牛肉','猪肉']])
a.index.names=['年度','季度']
print(a)
print('--------------------')
print(a.swaplevel('年度','季度'))


MySQL数据优化-多层索引

4.索引排序

sort_index( )

  • level:指定根据哪一层进行排序,默认为最层
  • inplace:是否修改原数据。默认为false
import numpy as np
import pandas as pd
a=pd.dataframe(np.random.random(size=(4,4)),index=[['2021','2021','2022','2022'],
                                                    [1,3,2,4]],
              columns=[['蔬菜','蔬菜','肉类','肉类'],['胡萝卜','白菜','牛肉','猪肉']])
a.index.names=['年度','季度']
print(a)
print('--------------------')
print(a.sort_index())
print('--------------------')
print(a.sort_index(level=1))


MySQL数据优化-多层索引

5.索引堆叠

stack( )

将指定层级的列转换成行

import numpy as np
import pandas as pd
a=pd.dataframe(np.random.random(size=(4,4)),index=[['2021','2021','2022','2022'],
                                                    [1,3,2,4]],
              columns=[['蔬菜','蔬菜','肉类','肉类'],['胡萝卜','胡萝卜','牛肉','牛肉']])
print(a)
print('--------------------')
print(a.stack(0))
print('--------------------')
print(a.stack(-1))


MySQL数据优化-多层索引

6.取消堆叠

unstack( )

将指定层级的行转换成列

fill_value:指定填充值。

import numpy as np
import pandas as pd
a=pd.dataframe(np.random.random(size=(4,4)),index=[['2021','2021','2022','2022'],
                                                    [1,3,2,4]],
              columns=[['蔬菜','蔬菜','肉类','肉类'],['胡萝卜','胡萝卜','牛肉','牛肉']])
print(a)
print('--------------------')
a=a.stack(0)
print(a)
print('--------------------')
print(a.unstack(-1))


MySQL数据优化-多层索引

import numpy as np
import pandas as pd
a=pd.dataframe(np.random.random(size=(4,4)),index=[['2021','2021','2022','2022'],
                                                    [1,3,2,4]],
              columns=[['蔬菜','蔬菜','肉类','肉类'],['胡萝卜','胡萝卜','牛肉','牛肉']])
print(a)
print('--------------------')
a=a.stack(0)
print(a)
print('--------------------')
print(a.unstack(0,fill_value='0'))

MySQL数据优化-多层索引

到此这篇关于mysql数据优化-多层索引的文章就介绍到这了,更多相关数据优化-多层索引内容请搜索以前的文章或继续浏览下面的相关文章希望大家以后多多支持!