欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

python设置 matplotlib 正确显示中文的四种方式

程序员文章站 2022-03-24 10:19:35
一、前言啪地一下点进来,很快呀~~matplotlib是 python 优秀的数据可视化第三方库,matplotlib是基于 numpy 的一套 python 工具包。这个包提供了丰富的数据绘图工具,...

一、前言

啪地一下点进来,很快呀~~

python设置 matplotlib 正确显示中文的四种方式

matplotlib是 python 优秀的数据可视化第三方库,matplotlib是基于 numpy 的一套 python 工具包。这个包提供了丰富的数据绘图工具,主要用于绘制一些统计图形。

python设置 matplotlib 正确显示中文的四种方式

matplotlib库由各种可视化类构成,内部结构复杂,受 matlab 启发 matplotlib.pyplot 是绘制各类可视化图形的命令子库,相当于快捷方式。

import matplotlib.pyplot as plt

可 matplotlib 并不支持中文显示。有中文显示会出现如下问题:

# -*- coding: utf-8 -*-
"""
@author  :叶庭云
@公众号  :修炼python
@csdn    :https://yetingyun.blog.csdn.net/
三折线  黑白灰风格  标签label 标记点形状
"""
import matplotlib.pyplot as plt

# 生成x轴数据  列表推导式
x_data = [i for i in range(0, 55, 5)]

# 构造y轴数据
y_data1 = [0.5, 0.62, 0.72, 0.78, 0.85, 0.7, 0.64, 0.44, 0.29, 0.15, 0.09]
y_data2 = [0.5, 0.67, 0.71, 0.76, 0.79, 0.66, 0.58, 0.44, 0.38, 0.26, 0.18]
y_data3 = [0.5, 0.59, 0.72, 0.74, 0.76, 0.68, 0.58, 0.48, 0.4, 0.36, 0.3]

# 设置图形显示风格
plt.style.use('ggplot')

# 设置figure大小  像素
plt.figure(figsize=(8, 5), dpi=100)

# 绘制三条折线  点的形状 颜色  标签:用于图例显示
plt.plot(x_data, y_data1, marker='^', color="k", label="设备1")
plt.plot(x_data, y_data2, marker="o", color="k", label="设备2")
plt.plot(x_data, y_data3, marker="s", color="k", label="设备3")

# x y 轴标签   字体大小
plt.xlabel("时间周期/min", fontsize=13)
plt.ylabel("直接信任度值", fontsize=13)
# 显示图例
plt.legend()

# 保存图片  展示show
plt.savefig("折线图01.png", dpi=200)
plt.show()


可 matplotlib 并不支持中文显示。有中文显示会出现如下问题:

# -*- coding: utf-8 -*-
"""
@author  :叶庭云
@公众号  :修炼python
@csdn    :https://yetingyun.blog.csdn.net/
三折线  黑白灰风格  标签label 标记点形状
"""
import matplotlib.pyplot as plt

# 生成x轴数据  列表推导式
x_data = [i for i in range(0, 55, 5)]

# 构造y轴数据
y_data1 = [0.5, 0.62, 0.72, 0.78, 0.85, 0.7, 0.64, 0.44, 0.29, 0.15, 0.09]
y_data2 = [0.5, 0.67, 0.71, 0.76, 0.79, 0.66, 0.58, 0.44, 0.38, 0.26, 0.18]
y_data3 = [0.5, 0.59, 0.72, 0.74, 0.76, 0.68, 0.58, 0.48, 0.4, 0.36, 0.3]

# 设置图形显示风格
plt.style.use('ggplot')

# 设置figure大小  像素
plt.figure(figsize=(8, 5), dpi=100)

# 绘制三条折线  点的形状 颜色  标签:用于图例显示
plt.plot(x_data, y_data1, marker='^', color="k", label="设备1")
plt.plot(x_data, y_data2, marker="o", color="k", label="设备2")
plt.plot(x_data, y_data3, marker="s", color="k", label="设备3")

# x y 轴标签   字体大小
plt.xlabel("时间周期/min", fontsize=13)
plt.ylabel("直接信任度值", fontsize=13)
# 显示图例
plt.legend()

# 保存图片  展示show
plt.savefig("折线图01.png", dpi=200)
plt.show()


python设置 matplotlib 正确显示中文的四种方式

需要我们手动一下下设置~~,才能解决中文显示的问题。

二、解决方法

1. 方式一

from matplotlib.font_manager import fontproperties  # 导入fontproperties

font = fontproperties(fname="simhei.ttf", size=14)  # 设置字体

# 哪里需要显示中文就在哪里设置
# -*- coding: utf-8 -*-
"""
@author  :叶庭云
@公众号  :修炼python
@csdn    :https://yetingyun.blog.csdn.net/
三折线  黑白灰风格  标签label 标记点形状
"""
import matplotlib.pyplot as plt
from matplotlib.font_manager import fontproperties  # 步骤一
# 生成x轴数据  列表推导式
x_data = [i for i in range(0, 55, 5)]

# 构造y轴数据
y_data1 = [0.5, 0.62, 0.72, 0.78, 0.85, 0.7, 0.64, 0.44, 0.29, 0.15, 0.09]
y_data2 = [0.5, 0.67, 0.71, 0.76, 0.79, 0.66, 0.58, 0.44, 0.38, 0.26, 0.18]
y_data3 = [0.5, 0.59, 0.72, 0.74, 0.76, 0.68, 0.58, 0.48, 0.4, 0.36, 0.3]

# 设置图形显示风格
plt.style.use('ggplot')
font = fontproperties(fname="simhei.ttf", size=14)  # 步骤二
# 设置figure大小  像素
plt.figure(figsize=(8, 5), dpi=100)

# 绘制三条折线  点的形状 颜色  标签:用于图例显示
plt.plot(x_data, y_data1, marker='^', color="k", label="设备1")
plt.plot(x_data, y_data2, marker="o", color="k", label="设备2")
plt.plot(x_data, y_data3, marker="s", color="k", label="设备3")

# x y 轴标签   字体大小
plt.xlabel("时间周期/min", fontsize=13, fontproperties=font)
plt.ylabel("直接信任度值", fontsize=13, fontproperties=font)
# 显示图例
plt.legend(prop=font)

# 保存图片  展示show
plt.savefig("折线图01.png", dpi=200)
plt.show()

结果如下:

python设置 matplotlib 正确显示中文的四种方式

2. 方式二

通过 fontdict 字典参数来设置

fontdict={"family": "kaiti", "size": 15, "color": "r"}
# -*- coding: utf-8 -*-
"""
@author  :叶庭云
@公众号  :修炼python
@csdn    :https://yetingyun.blog.csdn.net/
三折线  黑白灰风格  标签label 标记点形状
"""
import matplotlib.pyplot as plt

# 生成x轴数据  列表推导式
x_data = [i for i in range(0, 55, 5)]

# 构造y轴数据
y_data1 = [0.5, 0.62, 0.72, 0.78, 0.85, 0.7, 0.64, 0.44, 0.29, 0.15, 0.09]
y_data2 = [0.5, 0.67, 0.71, 0.76, 0.79, 0.66, 0.58, 0.44, 0.38, 0.26, 0.18]
y_data3 = [0.5, 0.59, 0.72, 0.74, 0.76, 0.68, 0.58, 0.48, 0.4, 0.36, 0.3]

# 设置图形显示风格
plt.style.use('ggplot')

# 设置figure大小  像素
plt.figure(figsize=(8, 5), dpi=100)

# 绘制三条折线  点的形状 颜色  标签:用于图例显示
plt.plot(x_data, y_data1, marker='^', color="k", label="设备1")
plt.plot(x_data, y_data2, marker="o", color="k", label="设备2")
plt.plot(x_data, y_data3, marker="s", color="k", label="设备3")

# x y 轴标签   字体大小
plt.xlabel("时间周期/min", fontsize=13, fontdict={"family": "kaiti", "size": 15, "color": "r"})
plt.ylabel("直接信任度值", fontsize=13, fontdict={"family": "kaiti", "size": 15, "color": "k"})

# 显示图例
plt.legend(prop={'family': 'simhei', 'size': 16})

# 保存图片  展示show
plt.savefig("折线图01.png", dpi=200)
plt.show()

3. 方式三

改变全局的字体

# matplotlib其实是不支持显示中文的 显示中文需要一行代码设置字体
mpl.rcparams['font.family'] = 'simhei'
plt.rcparams['axes.unicode_minus'] = false   # 步骤二(解决坐标轴负数的负号显示问题)
# -*- coding: utf-8 -*-
"""
@author  :叶庭云
@公众号  :修炼python
@csdn    :https://yetingyun.blog.csdn.net/
三折线  黑白灰风格  标签label 标记点形状
"""
import matplotlib.pyplot as plt
import matplotlib as mpl

# 生成x轴数据  列表推导式
x_data = [i for i in range(0, 55, 5)]

# 构造y轴数据
y_data1 = [0.5, 0.62, 0.72, 0.78, 0.85, 0.7, 0.64, 0.44, 0.29, 0.15, 0.09]
y_data2 = [0.5, 0.67, 0.71, 0.76, 0.79, 0.66, 0.58, 0.44, 0.38, 0.26, 0.18]
y_data3 = [0.5, 0.59, 0.72, 0.74, 0.76, 0.68, 0.58, 0.48, 0.4, 0.36, 0.3]

# matplotlib其实是不支持显示中文的 显示中文需要一行代码设置字体
mpl.rcparams['font.family'] = 'simhei'
plt.rcparams['axes.unicode_minus'] = false   # 步骤二(解决坐标轴负数的负号显示问题)
# 设置图形显示风格
plt.style.use('ggplot')

# 设置figure大小  像素
plt.figure(figsize=(8, 5), dpi=100)

# 绘制三条折线  点的形状 颜色  标签:用于图例显示
plt.plot(x_data, y_data1, marker='^', color="k", label="设备1")
plt.plot(x_data, y_data2, marker="o", color="k", label="设备2")
plt.plot(x_data, y_data3, marker="s", color="k", label="设备3")

# x y 轴标签   字体大小
plt.xlabel("时间周期/min", fontsize=13)
plt.ylabel("直接信任度值", fontsize=13)

# 显示图例
plt.legend()

# 保存图片  展示show
plt.savefig("折线图01.png", dpi=200)
plt.show()

结果如下:

python设置 matplotlib 正确显示中文的四种方式

4. 方式四

同样也是全局改变字体的方法

font = {'family' : 'simhei',
        'weight' : 'bold',
        'size'   : '16'}
plt.rc('font', **font)               # 步骤一(设置字体的更多属性)
plt.rc('axes', unicode_minus=false)  # 步骤二(解决坐标轴负数的负号显示问题)
# -*- coding: utf-8 -*-
"""
@author  :叶庭云
@公众号  :修炼python
@csdn    :https://yetingyun.blog.csdn.net/
三折线  黑白灰风格  标签label 标记点形状
"""
import matplotlib.pyplot as plt

# 生成x轴数据  列表推导式
x_data = [i for i in range(0, 55, 5)]

# 构造y轴数据
y_data1 = [0.5, 0.62, 0.72, 0.78, 0.85, 0.7, 0.64, 0.44, 0.29, 0.15, 0.09]
y_data2 = [0.5, 0.67, 0.71, 0.76, 0.79, 0.66, 0.58, 0.44, 0.38, 0.26, 0.18]
y_data3 = [0.5, 0.59, 0.72, 0.74, 0.76, 0.68, 0.58, 0.48, 0.4, 0.36, 0.3]

font = {'family' : 'simhei',
        'weight' : 'bold',
        'size'   : '16'}
plt.rc('font', **font)               # 步骤一(设置字体的更多属性)
plt.rc('axes', unicode_minus=false)  # 步骤二(解决坐标轴负数的负号显示问题)

# 设置图形显示风格
plt.style.use('ggplot')

# 设置figure大小  像素
plt.figure(figsize=(8, 5), dpi=100)

# 绘制三条折线  点的形状 颜色  标签:用于图例显示
plt.plot(x_data, y_data1, marker='^', color="k", label="设备1")
plt.plot(x_data, y_data2, marker="o", color="k", label="设备2")
plt.plot(x_data, y_data3, marker="s", color="k", label="设备3")

# x y 轴标签   字体大小
plt.xlabel("时间周期/min", fontsize=13)
plt.ylabel("直接信任度值", fontsize=13)

# 显示图例
plt.legend()

# 保存图片  展示show
plt.savefig("折线图01.png", dpi=200)
plt.show()

结果如下:

python设置 matplotlib 正确显示中文的四种方式

三、总结

  • 方式一、方式二是哪里需要中文显示才设置,且不会污染全局字体设置,更灵活。
  • 方式三、方式四不改变全局的字体设置,一次设置,多次使用,更方便。

附常用字体如下:

  • 宋体:simsun
  • 黑体:simhei
  • 微软雅黑:microsoft yahei
  • 微软正黑体:microsoft jhenghei
  • 新宋体:nsimsun
  • 新细明体:pmingliu
  • 细明体:mingliu
  • 标楷体:dfkai-sb
  • 仿宋:fangsong
  • 楷体:kaiti
  • 隶书:lisu
  • 幼圆:youyuan
  • 华文细黑:stxihei
  • 华文楷体:stkaiti
  • 华文宋体:stsong
  • 华文中宋:stzhongsong
  • 华文仿宋:stfangsong
  • 方正舒体:fzshuti
  • 方正姚体:fzyaoti
  • 华文彩云:stcaiyun
  • 华文琥珀:sthupo
  • 华文隶书:stliti
  • 华文行楷:stxingkai
  • 华文新魏:stxinwei

以上就是python设置 matplotlib 正确显示中文的四种方式的详细内容,更多关于python matplotlib 正确显示中文的资料请关注其它相关文章!