python实现KNN近邻算法
程序员文章站
2022-03-23 20:42:20
示例:《电影类型分类》获取数据来源 电影名称 打斗次数 接吻次数 电影类型 california man...
示例:《电影类型分类》
获取数据来源
电影名称 | 打斗次数 | 接吻次数 | 电影类型 |
---|---|---|---|
california man | 3 | 104 | romance |
he's not really into dudes | 8 | 95 | romance |
beautiful woman | 1 | 81 | romance |
kevin longblade | 111 | 15 | action |
roob slayer 3000 | 99 | 2 | action |
amped ii | 88 | 10 | action |
unknown | 18 | 90 | unknown |
数据显示:肉眼判断电影类型unknown是什么
from matplotlib import pyplot as plt # 用来正常显示中文标签 plt.rcparams["font.sans-serif"] = ["simhei"] # 电影名称 names = ["california man", "he's not really into dudes", "beautiful woman", "kevin longblade", "robo slayer 3000", "amped ii", "unknown"] # 类型标签 labels = ["romance", "romance", "romance", "action", "action", "action", "unknown"] colors = ["darkblue", "red", "green"] colordict = {label: color for (label, color) in zip(set(labels), colors)} print(colordict) # 打斗次数,接吻次数 x = [3, 8, 1, 111, 99, 88, 18] y = [104, 95, 81, 15, 2, 10, 88] plt.title("通过打斗次数和接吻次数判断电影类型", fontsize=18) plt.xlabel("电影中打斗镜头出现的次数", fontsize=16) plt.ylabel("电影中接吻镜头出现的次数", fontsize=16) # 绘制数据 for i in range(len(x)): # 散点图绘制 plt.scatter(x[i], y[i], color=colordict[labels[i]]) # 每个点增加描述信息 for i in range(0, 7): plt.text(x[i]+2, y[i]-1, names[i], fontsize=14) plt.show()
问题分析:根据已知信息分析电影类型unknown是什么
核心思想:
未标记样本的类别由距离其最近的k个邻居的类别决定
距离度量:
一般距离计算使用欧式距离(用勾股定理计算距离),也可以采用曼哈顿距离(水平上和垂直上的距离之和)、余弦值和相似度(这是距离的另一种表达方式)。相比于上述距离,马氏距离更为精确,因为它能考虑很多因素,比如单位,由于在求协方差矩阵逆矩阵的过程中,可能不存在,而且若碰见3维及3维以上,求解过程中极其复杂,故可不使用马氏距离
知识扩展
- 马氏距离概念:表示数据的协方差距离
- 方差:数据集中各个点到均值点的距离的平方的平均值
- 标准差:方差的开方
- 协方差cov(x, y):e表示均值,d表示方差,x,y表示不同的数据集,xy表示数据集元素对应乘积组成数据集
cov(x, y) = e(xy) - e(x)*e(y)
cov(x, x) = d(x)
cov(x1+x2, y) = cov(x1, y) + cov(x2, y)
cov(ax, by) = abcov(x, y)
- 协方差矩阵:根据维度组成的矩阵,假设有三个维度,a,b,c
∑ij = [cov(a, a) cov(a, b) cov(a, c) cov(b, a) cov(b,b) cov(b, c) cov(c, a) cov(c, b) cov(c, c)]
算法实现:欧氏距离
编码实现
# 自定义实现 mytest1.py import numpy as np # 创建数据集 def createdataset(): features = np.array([[3, 104], [8, 95], [1, 81], [111, 15], [99, 2], [88, 10]]) labels = ["romance", "romance", "romance", "action", "action", "action"] return features, labels def knnclassify(testfeature, trainingset, labels, k): """ knn算法实现,采用欧式距离 :param testfeature: 测试数据集,ndarray类型,一维数组 :param trainingset: 训练数据集,ndarray类型,二维数组 :param labels: 训练集对应标签,ndarray类型,一维数组 :param k: k值,int类型 :return: 预测结果,类型与标签中元素一致 """ datasetsize = trainingset.shape[0] """ 构建一个由dataset[i] - testfeature的新的数据集diffmat diffmat中的每个元素都是dataset中每个特征与testfeature的差值(欧式距离中差) """ testfeaturearray = np.tile(testfeature, (datasetsize, 1)) diffmat = testfeaturearray - trainingset # 对每个差值求平方 sqdiffmat = diffmat ** 2 # 计算dataset中每个属性与testfeature的差的平方的和 sqdistances = sqdiffmat.sum(axis=1) # 计算每个feature与testfeature之间的欧式距离 distances = sqdistances ** 0.5 """ 排序,按照从小到大的顺序记录distances中各个数据的位置 如distance = [5, 9, 0, 2] 则sortedstance = [2, 3, 0, 1] """ sorteddistances = distances.argsort() # 选择距离最小的k个点 classcount = {} for i in range(k): voteilabel = labels[list(sorteddistances).index(i)] classcount[voteilabel] = classcount.get(voteilabel, 0) + 1 # 对k个结果进行统计、排序,选取最终结果,将字典按照value值从大到小排序 sortedclasscount = sorted(classcount.items(), key=lambda x: x[1], reverse=true) return sortedclasscount[0][0] testfeature = np.array([100, 200]) features, labels = createdataset() res = knnclassify(testfeature, features, labels, 3) print(res) # 使用python包实现 mytest2.py from sklearn.neighbors import kneighborsclassifier from .mytest1 import createdataset features, labels = createdataset() k = 5 clf = kneighborsclassifier(k_neighbors=k) clf.fit(features, labels) # 样本值 my_sample = [[18, 90]] res = clf.predict(my_sample) print(res)
示例:《交友网站匹配效果预测》
数据来源:略
数据显示
import pandas as pd import numpy as np from matplotlib import pyplot as plt from mpl_toolkits.mplot3d import axes3d # 数据加载 def loaddatingdata(file): datingdata = pd.read_table(file, header=none) datingdata.columns = ["flightdistance", "playtimepreweek", "icecreamcostpreweek", "label"] datingtraindata = np.array(datingdata[["flightdistance", "playtimepreweek", "icecreamcostpreweek"]]) datingtrainlabel = np.array(datingdata["label"]) return datingdata, datingtraindata, datingtrainlabel # 3d图显示数据 def dataview3d(datingtraindata, datingtrainlabel): plt.figure(1, figsize=(8, 3)) plt.subplot(111, projection="3d") plt.scatter(np.array([datingtraindata[x][0] for x in range(len(datingtrainlabel)) if datingtrainlabel[x] == "smalldoses"]), np.array([datingtraindata[x][1] for x in range(len(datingtrainlabel)) if datingtrainlabel[x] == "smalldoses"]), np.array([datingtraindata[x][2] for x in range(len(datingtrainlabel)) if datingtrainlabel[x] == "smalldoses"]), c="red") plt.scatter(np.array([datingtraindata[x][0] for x in range(len(datingtrainlabel)) if datingtrainlabel[x] == "didntlike"]), np.array([datingtraindata[x][1] for x in range(len(datingtrainlabel)) if datingtrainlabel[x] == "didntlike"]), np.array([datingtraindata[x][2] for x in range(len(datingtrainlabel)) if datingtrainlabel[x] == "didntlike"]), c="green") plt.scatter(np.array([datingtraindata[x][0] for x in range(len(datingtrainlabel)) if datingtrainlabel[x] == "largedoses"]), np.array([datingtraindata[x][1] for x in range(len(datingtrainlabel)) if datingtrainlabel[x] == "largedoses"]), np.array([datingtraindata[x][2] for x in range(len(datingtrainlabel)) if datingtrainlabel[x] == "largedoses"]), c="blue") plt.xlabel("飞行里程数", fontsize=16) plt.ylabel("视频游戏耗时百分比", fontsize=16) plt.clabel("冰淇凌消耗", fontsize=16) plt.show() datingdata, datingtraindata, datingtrainlabel = loaddatingdata(filepath1) datingview3d(datingtraindata, datingtrainlabel)
问题分析:抽取数据集的前10%在数据集的后90%进行测试
编码实现
# 自定义方法实现 import pandas as pd import numpy as np # 数据加载 def loaddatingdata(file): datingdata = pd.read_table(file, header=none) datingdata.columns = ["flightdistance", "playtimepreweek", "icecreamcostpreweek", "label"] datingtraindata = np.array(datingdata[["flightdistance", "playtimepreweek", "icecreamcostpreweek"]]) datingtrainlabel = np.array(datingdata["label"]) return datingdata, datingtraindata, datingtrainlabel # 数据归一化 def autonorm(datingtraindata): # 获取数据集每一列的最值 minvalues, maxvalues = datingtraindata.min(0), datingtraindata.max(0) diffvalues = maxvalues - minvalues # 定义形状和datingtraindata相似的最小值矩阵和差值矩阵 m = datingtraindata.shape(0) minvaluesdata = np.tile(minvalues, (m, 1)) diffvaluesdata = np.tile(diffvalues, (m, 1)) normvaluesdata = (datingtraindata-minvaluesdata)/diffvaluesdata return normvaluesdata # 核心算法实现 def knnclassifier(testdata, traindata, trainlabel, k): m = traindata.shape(0) testdataarray = np.tile(testdata, (m, 1)) diffdataarray = (testdataarray - traindata) ** 2 sumdataarray = diffdataarray.sum(axis=1) ** 0.5 # 对结果进行排序 sumdatasortedarray = sumdataarray.argsort() classcount = {} for i in range(k): labelname = trainlabel[list(sumdatasortedarray).index(i)] classcount[labelname] = classcount.get(labelname, 0)+1 classcount = sorted(classcount.items(), key=lambda x: x[1], reversed=true) return classcount[0][0] # 数据测试 def datingtest(file): datingdata, datingtraindata, datingtrainlabel = loaddatingdata(file) normvaluesdata = autonorm(datingtraindata) errorcount = 0 ratio = 0.10 total = datingtraindata.shape(0) numbertest = int(total * ratio) for i in range(numbertest): res = knnclassifier(normvaluesdata[i], normvaluesdata[numbertest:m], datingtrainlabel, 5) if res != datingtrainlabel[i]: errorcount += 1 print("the total error rate is : {}\n".format(error/float(numbertest))) if __name__ == "__main__": filepath = "./datingtestset1.txt" datingtest(filepath) # python 第三方包实现 import pandas as pd import numpy as np from sklearn.neighbors import kneighborsclassifier if __name__ == "__main__": filepath = "./datingtestset1.txt" datingdata, datingtraindata, datingtrainlabel = loaddatingdata(filepath) normvaluesdata = autonorm(datingtraindata) errorcount = 0 ratio = 0.10 total = normvaluesdata.shape[0] numbertest = int(total * ratio) k = 5 clf = kneighborsclassifier(n_neighbors=k) clf.fit(normvaluesdata[numbertest:total], datingtrainlabel[numbertest:total]) for i in range(numbertest): res = clf.predict(normvaluesdata[i].reshape(1, -1)) if res != datingtrainlabel[i]: errorcount += 1 print("the total error rate is : {}\n".format(errorcount/float(numbertest)))
以上就是python实现knn近邻算法的详细内容,更多关于python实现knn近邻算法的资料请关注其它相关文章!
上一篇: C/C++从源码到可执行程序的过程讲解
下一篇: jsp的jstl标签语言库讲解