欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  web前端

深入浅析JavaScript中的快速排序

程序员文章站 2022-03-23 15:14:03
...
深入浅析JavaScript中的快速排序

介绍

排序是指以特定顺序(数字或字母)排列线性表的元素。排序通常与搜索一起配合使用。

有许多排序算法,而迄今为止最快的算法之一是快速排序(Quicksort)

快速排序用分治策略对给定的列表元素进行排序。这意味着算法将问题分解为子问题,直到子问题变得足够简单可以直接解决为止。

从算法上讲,这可以用递归或循环实现。但是对于这个问题,用递归法更为自然。

了解快速排序背后的逻辑

先看一下快速排序的工作原理:

  1. 在数组中选择一个元素,这个元素被称为基准(Pivot)。通常把数组中的第一个或最后一个元素作为基准。
  2. 然后,重新排列数组的元素,以使基准左侧的有元素都小于基准,而右侧的所有元素都大于基准。这一步称为分区。如果一个元素等于基准,那么在哪一侧都无关紧要。
  3. 针对基准的左侧和右侧分别重复这一过程,直到对数组完成排序。

接下来通过一个例子理解这些步骤。假设有一个含有未排序元素 [7, -2, 4, 1, 6, 5, 0, -4, 2] 的数组。选择最后一个元素作为基准。数组的分解步骤如下图所示:

深入浅析JavaScript中的快速排序

在算法的步骤1中被选为基准的元素带颜色。分区后,基准元素始终处于数组中的正确位置。

黑色粗体边框的数组表示该特定递归分支结束时的样子,最后得到的数组只包含一个元素。

最后可以看到该算法的结果排序。

用 JavaScript 实现快速排序

这一算法的主干是“分区”步骤。无论用递归还是循环的方法,这个步骤都是一样的。

正是因为这个特点,首先编写为数组分区的代码 partition()

function partition(arr, start, end){
    // 以最后一个元素为基准
    const pivotValue = arr[end];
    let pivotIndex = start; 
    for (let i = start; i < end; i++) {
        if (arr[i] < pivotValue) {
        // 交换元素
        [arr[i], arr[pivotIndex]] = [arr[pivotIndex], arr[i]];
        // 移动到下一个元素
        pivotIndex++;
        }
    }
    
    // 把基准值放在中间
    [arr[pivotIndex], arr[end]] = [arr[end], arr[pivotIndex]] 
    return pivotIndex;
};

代码以最后一个元素为基准,用变量 pivotIndex 来跟踪“中间”位置,这个位置左侧的所有元素都比 pivotValue 小,而右侧的元素都比 pivotValue 大。

最后一步把基准(最后一个元素)与 pivotIndex 交换。

递归实现

在实现了 partition() 函数之后,我们必须递归地解决这个问题,并应用分区逻辑以完成其余步骤:

function quickSortRecursive(arr, start, end) {
    // 终止条件
    if (start >= end) {
        return;
    }
    
    // 返回 pivotIndex
    let index = partition(arr, start, end);
    
    // 将相同的逻辑递归地用于左右子数组
    quickSort(arr, start, index - 1);
    quickSort(arr, index + 1, end);
}

在这个函数中首先对数组进行分区,之后对左右两个子数组进行分区。只要这个函数收到一个不为空或有多个元素的数组,则将重复该过程。

空数组和仅包含一个元素的数组被视为已排序。

最后用下面的例子进行测试:

array = [7, -2, 4, 1, 6, 5, 0, -4, 2]
quickSortRecursive(array, 0, array.length - 1)

console.log(array)

输出:

-4,-2,0,1,2,4,5,6,7

循环实现

快速排序的递归方法更加直观。但是用循环实现快速排序是一个相对常见的面试题。

与大多数的递归到循环的转换方案一样,最先想到的是用栈来模拟递归调用。这样做可以重用一些我们熟悉的递归逻辑,并在循环中使用。

我们需要一种跟踪剩下的未排序子数组的方法。一种方法是简单地把“成对”的元素保留在堆栈中,用来表示给定未排序子数组的 startend

JavaScript 没有显式的栈数据结构,但是数组支持 push()pop() 函数。但是不支持 peek()函数,所以必须用 stack [stack.length-1] 手动检查栈顶。

我们将使用与递归方法相同的“分区”功能。看看如何编写Quicksort部分:

function quickSortIterative(arr) {
    // 用push()和pop()函数创建一个将作为栈使用的数组
    stack = [];
    
    // 将整个初始数组做为“未排序的子数组”
    stack.push(0);
    stack.push(arr.length - 1);
    
    // 没有显式的peek()函数
    // 只要存在未排序的子数组,就重复循环
    while(stack[stack.length - 1] >= 0){
        
        // 提取顶部未排序的子数组
        end = stack.pop();
        start = stack.pop();
        
        pivotIndex = partition(arr, start, end);
        
        // 如果基准的左侧有未排序的元素,
        // 则将该子数组添加到栈中,以便稍后对其进行排序
        if (pivotIndex - 1 > start){
            stack.push(start);
            stack.push(pivotIndex - 1);
        }
        
        // 如果基准的右侧有未排序的元素,
        // 则将该子数组添加到栈中,以便稍后对其进行排序
        if (pivotIndex + 1 < end){
            stack.push(pivotIndex + 1);
            stack.push(end);
        }
    }
}

以下是测试代码:

ourArray = [7, -2, 4, 1, 6, 5, 0, -4, 2]
quickSortIterative(ourArray)

console.log(ourArray)

输出:

-4,-2,0,1,2,4,5,6,7

可视化演示

当涉及到排序算法时,将其可视化能帮我们直观的了解它们是怎样运作的,下面这个例子搬运自*:

深入浅析JavaScript中的快速排序

在图中也把最后一个元素作为基准。给定数组分区后,递归遍历左侧,直到将其完全排序为止。然后对右侧进行排序。

快速排序的效率

现在讨论它的时间和空间复杂度。快速排序在最坏情况下的时间复杂度是 $O(n^2)$。平均时间复杂度为 $O(n\log n)$。通常,使用随机版本的快速排序可以避免最坏的情况。

快速排序算法的弱点是基准的选择。每选择一次错误的基准(大于或小于大多数元素的基准)都会带来最坏的时间复杂度。在重复选择基准时,如果元素值小于或大于该元素的基准时,时间复杂度为 $O(n\log n)$。

根据经验可以观察到,无论采用哪种数据基准选择策略,快速排序的时间复杂度都倾向于具有 $O(n\log n)$ 。

快速排序不会占用任何额外的空间(不包括为递归调用保留的空间)。这种算法被称为in-place算法,不需要额外的空间。

更多编程相关知识,请访问:编程入门!!

以上就是深入浅析JavaScript中的快速排序的详细内容,更多请关注其它相关文章!