欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

235. Lowest Common Ancestor of a Binary Search Tree 树 面试试题---最低公共祖先

程序员文章站 2022-03-22 18:01:10
...

235. Lowest Common Ancestor of a Binary Search Tree 树 面试试题---最低公共祖先

235. Lowest Common Ancestor of a Binary Search Tree 树 面试试题---最低公共祖先

Given a binary search tree (BST), find the lowest common ancestor (LCA) of two given nodes in the BST.

According to the definition of LCA on Wikipedia: “The lowest common ancestor is defined between two nodes p and q as the lowest node in T that has both p and q as descendants (where we allow a node to be a descendant of itself).”

Given binary search tree:  root = [6,2,8,0,4,7,9,null,null,3,5]

        _______6______
       /              \
    ___2__          ___8__
   /      \        /      \
   0      _4       7       9
         /  \
         3   5

Example 1:

Input: root = [6,2,8,0,4,7,9,null,null,3,5], p = 2, q = 8
Output: 6
Explanation: The LCA of nodes 2 and 8 is 6.

Example 2:

Input: root = [6,2,8,0,4,7,9,null,null,3,5], p = 2, q = 4
Output: 2
Explanation: The LCA of nodes 2 and 4 is 2, since a node can be a descendant of itself 
             according to the LCA definition.

Note:

  • All of the nodes' values will be unique.
  • p and q are different and both values will exist in the BST.

代码

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */
class Solution {
public:
    TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
        /*//非递归,因为有while循环,所以用的时间比较多
        TreeNode *curNode = root;
        while(1){
            if(curNode->val > p->val && curNode->val > q->val)
                curNode = curNode->left;
            else if(curNode->val < p->val && curNode->val < q->val)
                curNode = curNode->right;
            else
                return curNode;
        }*/
        //递归,效率高
        if (root->val > p->val && root->val > q->val) 
            return lowestCommonAncestor(root->left, p, q);
        else if (root->val < p->val && root->val < q->val) 
            return lowestCommonAncestor(root->right, p, q);
        else return root;
    }
};