欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

LCD(五)Backlight背光子系统

程序员文章站 2022-03-22 16:41:41
...

一、Backlight背光子系统概述

LCD的背光原理主要是由核心板的一根引脚控制背光电源,一根PWM引脚控制背光亮度组成,应用程序可以通过改变PWM的频率达到改变背光亮度的目的。

                                        Backlight背光子系统构建过程结构关系图

LCD(五)Backlight背光子系统

            黑色加粗部分为开发人员需要填充的部分,其中pwm_id:第几个定时器来做pwm;max_brightness背光调节范围的最大值;dft_brightness:默认背光的当前值;pwm_period_ns:定时器周期;update_status()更新背光驱动;get_brightness()获得当前背光值。

二、PWM核心驱动

代码/arch/arm/plat-samsung/pwm.c

内核中需要使能“PWM device support”

System Type -->
    [*]PWM device support
它是pwm核心驱动,该驱动把设备和驱动没有分离开来,都写在了这个pwm.c中,我们先看看pwm.c中的驱动部分
static int __init pwm_init(void)
{
	int ret;

	clk_scaler[0] = clk_get(NULL, "pwm-scaler0");//获取0号时钟
	clk_scaler[1] = clk_get(NULL, "pwm-scaler1");//获取1号时钟

	if (IS_ERR(clk_scaler[0]) || IS_ERR(clk_scaler[1])) {
		printk(KERN_ERR "%s: failed to get scaler clocks\n", __func__);
		return -EINVAL;
	}

	ret = platform_driver_register(&s3c_pwm_driver);//注册pwm驱动
	if (ret)
		printk(KERN_ERR "%s: failed to add pwm driver\n", __func__);

	return ret;
}
//s3c_pwm_driver定义
static struct platform_driver s3c_pwm_driver = {
	.driver		= {
		.name	= "s3c24xx-pwm",//驱动名
		.owner	= THIS_MODULE,
	},
	.probe		= s3c_pwm_probe,//探测函数
	.remove		= __devexit_p(s3c_pwm_remove),
	.suspend	= s3c_pwm_suspend,
	.resume		= s3c_pwm_resume,
};

探测函数

static int s3c_pwm_probe(struct platform_device *pdev)
{
	struct device *dev = &pdev->dev;
	struct pwm_device *pwm;
	unsigned long flags;
	unsigned long tcon;
	unsigned int id = pdev->id;
	int ret;

	if (id == 4) {
		dev_err(dev, "TIMER4 is currently not supported\n");
		return -ENXIO;
	}

	pwm = kzalloc(sizeof(struct pwm_device), GFP_KERNEL);
	if (pwm == NULL) {
		dev_err(dev, "failed to allocate pwm_device\n");
		return -ENOMEM;
	}

	pwm->pdev = pdev;
	pwm->pwm_id = id;

	/* calculate base of control bits in TCON */
	pwm->tcon_base = id == 0 ? 0 : (id * 4) + 4;//计算TCON中控制哪个定时器

	pwm->clk = clk_get(dev, "pwm-tin");//获取预分频后的时钟
	if (IS_ERR(pwm->clk)) {
		dev_err(dev, "failed to get pwm tin clk\n");
		ret = PTR_ERR(pwm->clk);
		goto err_alloc;
	}

	pwm->clk_div = clk_get(dev, "pwm-tdiv");
	if (IS_ERR(pwm->clk_div)) {//获取二次分屏后的时钟
		dev_err(dev, "failed to get pwm tdiv clk\n");
		ret = PTR_ERR(pwm->clk_div);
		goto err_clk_tin;
	}

	local_irq_save(flags);

	tcon = __raw_readl(S3C2410_TCON);
	tcon |= pwm_tcon_invert(pwm);//信号反转输出
	__raw_writel(tcon, S3C2410_TCON);

	local_irq_restore(flags);


	ret = pwm_register(pwm);//注册pwm设备
	if (ret) {
		dev_err(dev, "failed to register pwm\n");
		goto err_clk_tdiv;
	}

	pwm_dbg(pwm, "config bits %02x\n",
		(__raw_readl(S3C2410_TCON) >> pwm->tcon_base) & 0x0f);

	dev_info(dev, "tin at %lu, tdiv at %lu, tin=%sclk, base %d\n",
		 clk_get_rate(pwm->clk),
		 clk_get_rate(pwm->clk_div),
		 pwm_is_tdiv(pwm) ? "div" : "ext", pwm->tcon_base);

	platform_set_drvdata(pdev, pwm);
	return 0;

 err_clk_tdiv:
	clk_put(pwm->clk_div);

 err_clk_tin:
	clk_put(pwm->clk);

 err_alloc:
	kfree(pwm);
	return ret;
}

pwm设备函数的注册pwm_register

static LIST_HEAD(pwm_list);
static DEFINE_MUTEX(pwm_lock);
static int pwm_register(struct pwm_device *pwm)
{
	pwm->duty_ns = -1;
	pwm->period_ns = -1;

	mutex_lock(&pwm_lock);
	list_add_tail(&pwm->list, &pwm_list);//把pwm设备挂到pwm_list链表上
	mutex_unlock(&pwm_lock);

	return 0;
}

pwm.c提供的接口函数

struct pwm_device *pwm_request(int pwm_id, const char *label)
int pwm_config(struct pwm_device *pwm, int duty_ns, int period_ns)
int pwm_enable(struct pwm_device *pwm)
void pwm_free(struct pwm_device *pwm)
EXPORT_SYMBOL(pwm_request);  //申请PWM设备
EXPORT_SYMBOL(pwm_config);   //配置PWM设备,duty_ns为空占比,period_ns为周期
EXPORT_SYMBOL(pwm_enable);   //启动Timer定时器
EXPORT_SYMBOL(pwm_disable);   //关闭Timer定时器
分析下最难的一个配置PWM函数,这个函数主要是根据周期period_ns,计算TCNT,根据空占比duty_ns,计算TCMP,然后写入相应寄存器。
int pwm_config(struct pwm_device *pwm, int duty_ns, int period_ns)
{
    unsigned long tin_rate;
    unsigned long tin_ns;
    unsigned long period;
    unsigned long flags;
    unsigned long tcon;
    unsigned long tcnt;
    long tcmp;

    /* We currently avoid using 64bit arithmetic by using the
     * fact that anything faster than 1Hz is easily representable
     * by 32bits. */

    if (period_ns > NS_IN_HZ || duty_ns > NS_IN_HZ)
        return -ERANGE;

    if (duty_ns > period_ns)
        return -EINVAL;

    if (period_ns == pwm->period_ns &&
        duty_ns == pwm->duty_ns)
        return 0;

    /* The TCMP and TCNT can be read without a lock, they're not
     * shared between the timers. */

    tcmp = __raw_readl(S3C2410_TCMPB(pwm->pwm_id));
    tcnt = __raw_readl(S3C2410_TCNTB(pwm->pwm_id));

    period = NS_IN_HZ / period_ns;//计算周期

    pwm_dbg(pwm, "duty_ns=%d, period_ns=%d (%lu)\n",
        duty_ns, period_ns, period);

    /* Check to see if we are changing the clock rate of the PWM */

    if (pwm->period_ns != period_ns) {
        if (pwm_is_tdiv(pwm)) {
            tin_rate = pwm_calc_tin(pwm, period);
            clk_set_rate(pwm->clk_div, tin_rate);
        } else
            tin_rate = clk_get_rate(pwm->clk);

        pwm->period_ns = period_ns;

        pwm_dbg(pwm, "tin_rate=%lu\n", tin_rate);

        tin_ns = NS_IN_HZ / tin_rate;
        tcnt = period_ns / tin_ns;//根据周期求TCNT,n=To/Ti
    } else
        tin_ns = NS_IN_HZ / clk_get_rate(pwm->clk);

    /* Note, counters count down */

    tcmp = duty_ns / tin_ns;
    tcmp = tcnt - tcmp;//根据占空比求TCMP
    /* the pwm hw only checks the compare register after a decrement,
       so the pin never toggles if tcmp = tcnt */
    if (tcmp == tcnt)
        tcmp--;

    pwm_dbg(pwm, "tin_ns=%lu, tcmp=%ld/%lu\n", tin_ns, tcmp, tcnt);

    if (tcmp < 0)
        tcmp = 0;

    /* Update the PWM register block. */

    local_irq_save(flags);

    __raw_writel(tcmp, S3C2410_TCMPB(pwm->pwm_id));//写入TCMp
    __raw_writel(tcnt, S3C2410_TCNTB(pwm->pwm_id));//写入TCNT

    tcon = __raw_readl(S3C2410_TCON);
    tcon |= pwm_tcon_manulupdate(pwm);
    tcon |= pwm_tcon_autoreload(pwm);//自动加载
    __raw_writel(tcon, S3C2410_TCON);

    tcon &= ~pwm_tcon_manulupdate(pwm);//更新TCNT和TCMP
    __raw_writel(tcon, S3C2410_TCON);

    local_irq_restore(flags);

    return 0;
}
下面说说这个周期是怎么设计的
我们定时器的输出频率fi=PCLK/(prescaler value+1)/(divider value),这个可以获得确定值
我们需要写入一个初值n给TCNT,这样就可以获得一个频率,为什么呢?
根据初值n=fi/fo,那么n=To/Ti
所以当用户给pwm_config函数传递一个周期period_ns,其实就是To=period_ns
这样根据前面公式n=To/Ti= period_ns/fi,然后将这个初值n写入TCNT就可以改变周期了
 
接着我再补充说明下pwm_config函数里代码注释关于自动加载怎么回事?
定时器工作原理其实是TCNT的值在时钟到来时,减一计数,每次减一完后,拿当前TCNT与TCMP比较,如果TCNT=TCMP,那么信号电平反向输出,然后TCNT继续减一计数,直到TCNT减到零后,如果有自动加载功能那么此时将由TCNTB把计数初值再次写给TCNTP,同时TCMPB把比较值给TCMP,这样就完成一次初值重装,然后继续进行计数。我们给这种加载模式起了个名字叫双缓冲机制,其中TCMPB和TCNTB就是Buffer缓存。

前面说pwm.c集驱动和设备于一体,那么下面我们看看设备相关的代码

注:kernel-3.0.8在/arch/plat-samsung/dev-pwm.c文件中
#define TIMER_RESOURCE_SIZE (1)

#define TIMER_RESOURCE(_tmr, _irq)			\
	(struct resource [TIMER_RESOURCE_SIZE]) {	\
		[0] = {					\
			.start	= _irq,			\
			.end	= _irq,			\
			.flags	= IORESOURCE_IRQ	\
		}					\
	}

#define DEFINE_S3C_TIMER(_tmr_no, _irq)			\
	.name		= "s3c24xx-pwm",		\
	.id		= _tmr_no,			\
	.num_resources	= TIMER_RESOURCE_SIZE,		\
	.resource	= TIMER_RESOURCE(_tmr_no, _irq),\

/*
 * since we already have an static mapping for the timer,
 * we do not bother setting any IO resource for the base.
 */

struct platform_device s3c_device_timer[] = {
	[0] = { DEFINE_S3C_TIMER(0, IRQ_TIMER0) },
	[1] = { DEFINE_S3C_TIMER(1, IRQ_TIMER1) },
	[2] = { DEFINE_S3C_TIMER(2, IRQ_TIMER2) },
	[3] = { DEFINE_S3C_TIMER(3, IRQ_TIMER3) },
	[4] = { DEFINE_S3C_TIMER(4, IRQ_TIMER4) },
};
EXPORT_SYMBOL(s3c_device_timer);
        上面的代码就是设备部分代码,其实就是五个定时器的资源,我们把目光放在DEFINE_S3C_TIMER宏上,你会发现其设备名是"s3c24xx-pwm",而我们在pwm.c中定义的驱动名也是"s3c24xx-pwm",这样如果我们把设备注册到内核,那么设备"s3c24xx-pwm"和驱动"s3c24xx-pwm"就会匹配成功。所以如果你用到定时器0,那么你只要在BSP中添加s3c_device_timer[0]就可以了。我们现在做的是Backlight背光驱动,使用的是Timer0定时器,我们就在tq210的BSP文件mach-tq210.c中添加如下代码

static struct platform_device *tq210_devices[] __initdata = {
	...
	
#ifdef CONFIG_BACKLIGHT_PWM
	&s3c_device_timer[0],
#endif

	...
};

三、Backlight核心驱动

代码/driver/video/backlight/backlight.c

内核中需要使能“Lowlevel Backlight controls”

Device Drivers --->
    Graphics support  --->
        [*] Backlight & LCD device support  --->
            <*>   Lowlevel Backlight controls

代码分析

static int __init backlight_class_init(void)
{
	backlight_class = class_create(THIS_MODULE, "backlight");//在/sys/class**册backlight类
	if (IS_ERR(backlight_class)) {
		printk(KERN_WARNING "Unable to create backlight class; errno = %ld\n",
				PTR_ERR(backlight_class));
		return PTR_ERR(backlight_class);
	}

	backlight_class->dev_attrs = bl_device_attributes;//添加类属性
	backlight_class->suspend = backlight_suspend;
	backlight_class->resume = backlight_resume;
	return 0;
}

backlight背光系统的主要就是靠这个类属性,设置背光值就是向这个类属性中某个成员写入背光值,这个类属性就是给用户的同一接口

#define __ATTR(_name,_mode,_show,_store) { \
	.attr = {.name = __stringify(_name), .mode = _mode },	\
	.show	= _show,					\
	.store	= _store,					\
}
static struct device_attribute bl_device_attributes[] = {
	__ATTR(bl_power, 0644, backlight_show_power, backlight_store_power),
	__ATTR(brightness, 0644, backlight_show_brightness,
		     backlight_store_brightness),
	__ATTR(actual_brightness, 0444, backlight_show_actual_brightness,
		     NULL),
	__ATTR(max_brightness, 0444, backlight_show_max_brightness, NULL),
	__ATTR(type, 0444, backlight_show_type, NULL),
	__ATTR_NULL,
};
很明显,在backlight类中我们创建了bl_power,brightness,actural_brightness,max_brightness四个成员,其中brightness是当前亮度,max_brightness是最大亮度。当用户层通过cat或者echo命令就会触发这些成员。对于这些属性的读写函数,我们先看看读的函数backlight_show_max_brightness吧
static ssize_t backlight_show_max_brightness(struct device *dev,
		struct device_attribute *attr, char *buf)
{
	struct backlight_device *bd = to_backlight_device(dev);

	return sprintf(buf, "%d\n", bd->props.max_brightness);//输出最大亮度
}

这个函数很简单,但是重点是引入了几个backlight背光子系统的几个重要的数据结构,我们好好学习下。

首先是backlight背光子系统的设备结构体backlight_device

struct backlight_device {
	/* Backlight properties */
	struct backlight_properties props;//背光属性

	/* Serialise access to update_status method */
	struct mutex update_lock;

	/* This protects the 'ops' field. If 'ops' is NULL, the driver that
	   registered this device has been unloaded, and if class_get_devdata()
	   points to something in the body of that driver, it is also invalid. */
	struct mutex ops_lock;
	const struct backlight_ops *ops;//背光操作函数,类似于file_operation

	/* The framebuffer notifier block */
	struct notifier_block fb_notif;

	struct device dev;//内嵌设备
};
下面先看看背光属性结构体backlight_properties
struct backlight_properties {
	/* Current User requested brightness (0 - max_brightness) */
	int brightness;//当前背光值
	/* Maximal value for brightness (read-only) */
	int max_brightness;//最大背光值
	/* Current FB Power mode (0: full on, 1..3: power saving
	   modes; 4: full off), see FB_BLANK_XXX */
	int power;
	/* FB Blanking active? (values as for power) */
	/* Due to be removed, please use (state & BL_CORE_FBBLANK) */
	int fb_blank;
	/* Backlight type */
	enum backlight_type type;
	/* Flags used to signal drivers of state changes */
	/* Upper 4 bits are reserved for driver internal use */
	unsigned int state;

#define BL_CORE_SUSPENDED	(1 << 0)	/* backlight is suspended */
#define BL_CORE_FBBLANK		(1 << 1)	/* backlight is under an fb blank event */
#define BL_CORE_DRIVER4		(1 << 28)	/* reserved for driver specific use */
#define BL_CORE_DRIVER3		(1 << 29)	/* reserved for driver specific use */
#define BL_CORE_DRIVER2		(1 << 30)	/* reserved for driver specific use */
#define BL_CORE_DRIVER1		(1 << 31)	/* reserved for driver specific use */

};

在看看背光操作函数

struct backlight_ops {
	unsigned int options;

#define BL_CORE_SUSPENDRESUME	(1 << 0)

	/* Notify the backlight driver some property has changed */
	int (*update_status)(struct backlight_device *);//更新背光状态
	/* Return the current backlight brightness (accounting for power,
	   fb_blank etc.) */
	int (*get_brightness)(struct backlight_device *);//获取背光值
	/* Check if given framebuffer device is the one bound to this backlight;
	   return 0 if not, !=0 if it is. If NULL, backlight always matches the fb. */
	int (*check_fb)(struct backlight_device *, struct fb_info *);
};
当前背光值函数backlight_store_brightness
static ssize_t backlight_store_brightness(struct device *dev,
		struct device_attribute *attr, const char *buf, size_t count)
{
	int rc;
	struct backlight_device *bd = to_backlight_device(dev);
	unsigned long brightness;

	rc = strict_strtoul(buf, 0, &brightness);
	if (rc)
		return rc;

	rc = -ENXIO;

	mutex_lock(&bd->ops_lock);
	if (bd->ops) {
		if (brightness > bd->props.max_brightness)
			rc = -EINVAL;
		else {
			pr_debug("backlight: set brightness to %lu\n",
				 brightness);
			bd->props.brightness = brightness;//传入背光值
			backlight_update_status(bd);//更新背光状态
			rc = count;
		}
	}
	mutex_unlock(&bd->ops_lock);

	backlight_generate_event(bd, BACKLIGHT_UPDATE_SYSFS);

	return rc;
}
static inline void backlight_update_status(struct backlight_device *bd)
{
	mutex_lock(&bd->update_lock);
	if (bd->ops && bd->ops->update_status)
		bd->ops->update_status(bd);
	mutex_unlock(&bd->update_lock);
}
对于这个backlight背光核心层驱动backlight.c,剩下的就是这个pwm.c给我们提供了哪些接口函数了
struct backlight_device *backlight_device_register(const char *name,
              struct device *parent, void *devdata, struct backlight_ops *ops)

void backlight_device_unregister(struct backlight_device *bd)

EXPORT_SYMBOL(backlight_device_register);  //注册背光设备
EXPORT_SYMBOL(backlight_device_unregister); //注销背光设备

四、基于PWM&Backlight的背光驱动

        结合上面的PWM核心层和Backlight背光子系统核心层,根据基于pwm的背光驱动/driver/video/backlight/pwm_bl.c来修改成基于tq210的蜂鸣器驱动

内核中需要使能“Generic PWM based Backlight Driver”

Device Drivers --->
    Graphics support  --->
        [*] Backlight & LCD device support  --->
            <*>  Generic PWM based Backlight Driver

tq210蜂鸣器使用GPD0_1口,该端口工作在TOU0模式下,就可以通过设备定时器的TCNT和TCMP来控制定时器的波形。

首先,在tq210的BSP文件mach-tq210.c,如下添加

static struct platform_device tq210_backlight_device = {
	.name		= "pwm-backlight",//设备名
	.dev		= {
		.parent		= &s3c_device_timer[0].dev,//该设备基于pwm中的0号定时器
		.platform_data	= &tq_backlight_data,
	},
};

添加平台数据

static struct platform_pwm_backlight_data tq210_backlight_data = {
	.pwm_id		= 0,//对应的就是Timer0
	.max_brightness	= 255,//最大亮度
	.dft_brightness	= 100,//255,//当前亮度
        .lth_brightness = 50,//咱不知道干啥用的 
        .pwm_period_ns	= 20000,//78770,//T0,即输出时钟周期
	.init		= tq210_backlight_init,//端口初始化
	.exit		= tq210_backlight_exit,
};
static int tq210_backlight_init(struct device *dev)
{
	int ret;

	ret = gpio_request(S5PV210_GPD0(0), "Backlight");
	if (ret) {
		printk(KERN_ERR "failed to request GPD for PWM-OUT 0\n");
		return ret;
	}

	/* Configure GPIO pin with S5PV210_GPD_0_0_TOUT_0 */
	s3c_gpio_cfgpin(S5PV210_GPD0(0), S3C_GPIO_SFN(2));

	return 0;
}

static void tq210_backlight_exit(struct device *dev)
{
	s3c_gpio_cfgpin(S5PV210_GPD0(0), S3C_GPIO_OUTPUT);
	gpio_free(S5PV210_GPD0(0));
}

然后把tq210_backlight_device添加到tq210_devices数组

static struct platform_device *tq210_devices[] __initdata = {
	...
	
#ifdef CONFIG_BACKLIGHT_PWM
	&s3c_device_timer[0],
	&s3c_device_timer[1],
	&s3c_device_timer[2],
	&s3c_device_timer[3],
	&tq210_backlight_device,//同时添加对应的s3c_device_timer[0]
#endif

	...
};

最后添加头文件

#include <linux/pwm_backlight.h>
分析pwm_bl.c文件
static struct platform_driver pwm_backlight_driver = {
	.driver		= {
		.name	= "pwm-backlight", //驱动名需要与设备名保持一致
		.owner	= THIS_MODULE,
	},
	.probe		= pwm_backlight_probe,
	.remove		= pwm_backlight_remove,
	.suspend	= pwm_backlight_suspend,
	.resume		= pwm_backlight_resume,
};
static int __init pwm_backlight_init(void)
{
	return platform_driver_register(&pwm_backlight_driver);
}

探测函数

static int pwm_backlight_probe(struct platform_device *pdev)
{
	struct backlight_properties props;
	struct platform_pwm_backlight_data *data = pdev->dev.platform_data;
	struct backlight_device *bl;
	struct pwm_bl_data *pb; //本驱动的私有结构体
	int ret;

	if (!data) {
		dev_err(&pdev->dev, "failed to find platform data\n");
		return -EINVAL;
	}

	if (data->init) {//初始化端口,在BSP文件中定义
		ret = data->init(&pdev->dev);
		if (ret < 0)
			return ret;
	}

	pb = kzalloc(sizeof(*pb), GFP_KERNEL);
	if (!pb) {
		dev_err(&pdev->dev, "no memory for state\n");
		ret = -ENOMEM;
		goto err_alloc;
	}

	pb->period = data->pwm_period_ns;//获取周期
	pb->notify = data->notify;
	pb->check_fb = data->check_fb;
	pb->lth_brightness = data->lth_brightness *
		(data->pwm_period_ns / data->max_brightness);
	pb->dev = &pdev->dev;

	pb->pwm = pwm_request(data->pwm_id, "backlight");//注册pwm设备
	if (IS_ERR(pb->pwm)) {
		dev_err(&pdev->dev, "unable to request PWM for backlight\n");
		ret = PTR_ERR(pb->pwm);
		goto err_pwm;
	} else
		dev_dbg(&pdev->dev, "got pwm for backlight\n");

	memset(&props, 0, sizeof(struct backlight_properties));
	props.type = BACKLIGHT_RAW;
	props.max_brightness = data->max_brightness;
	bl = backlight_device_register(dev_name(&pdev->dev), &pdev->dev, pb,
				       &pwm_backlight_ops, &props);//注册backlight设备,注意pwm_backlight_ops函数
	if (IS_ERR(bl)) {
		dev_err(&pdev->dev, "failed to register backlight\n");
		ret = PTR_ERR(bl);
		goto err_bl;
	}

	bl->props.brightness = data->dft_brightness;
	backlight_update_status(bl);//先点亮光

	platform_set_drvdata(pdev, bl);//设置bl私有数据
	return 0;

err_bl:
	pwm_free(pb->pwm);
err_pwm:
	kfree(pb);
err_alloc:
	if (data->exit)
		data->exit(&pdev->dev);
	return ret;
}
对于这个驱动,重点关注的是注册backlight设备时传入的参数pwm_backlight_ops,因为我们之前分析backlight背光子系统时说过,背光设备结构体中有个操作背光的函数集合,在我们的pwm_bl.c中,就需要定义这个操作背光的函数集合,也就是pwm_backlight_ops函数
static const struct backlight_ops pwm_backlight_ops = {
	.update_status	= pwm_backlight_update_status,//更新背光亮度
	.get_brightness	= pwm_backlight_get_brightness,//获取背光亮度
	.check_fb	= pwm_backlight_check_fb,
};
static int pwm_backlight_update_status(struct backlight_device *bl)
{
	struct pwm_bl_data *pb = dev_get_drvdata(&bl->dev);
	int brightness = bl->props.brightness;
	int max = bl->props.max_brightness;

	if (bl->props.power != FB_BLANK_UNBLANK)
		brightness = 0;

	if (bl->props.fb_blank != FB_BLANK_UNBLANK)
		brightness = 0;

	if (pb->notify)
		brightness = pb->notify(pb->dev, brightness);

	if (brightness == 0) {//背光值为0,关闭被背光
		pwm_config(pb->pwm, 0, pb->period);
		pwm_disable(pb->pwm);
	} else {//调用pwm中的API设置背光
		brightness = pb->lth_brightness +
			(brightness * (pb->period - pb->lth_brightness) / max);
		pwm_config(pb->pwm, brightness, pb->period);
		pwm_enable(pb->pwm);
	}
	return 0;
}

五、测试

LCD(五)Backlight背光子系统






相关标签: LCD backlight