欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

python爬虫之利用selenium+opencv识别滑动验证并模拟登陆知乎功能

程序员文章站 2022-03-22 11:14:04
滑动验证距离分别获取验证码背景图和滑块图两张照片,然后利用opencv库,通过高斯模糊和canny算法进行处理,然后通过matchtemplate方法进行两张图的匹配,获得滑动距离。需要注意的是,知乎...

滑动验证距离

分别获取验证码背景图和滑块图两张照片,然后利用opencv库,通过高斯模糊和canny算法进行处理,然后通过matchtemplate方法进行两张图的匹配,获得滑动距离。需要注意的是,知乎验证码在进行操作的时候,需要在原有基础上再向右偏移10px距离

def get_distance(self, bg_img_path='./bg.png', slider_img_path='./slider.png'):
        """获取滑块移动距离"""

        # 背景图片处理
        bg_img = cv.imread(bg_img_path, 0)  # 读入灰度图片
        bg_img = cv.gaussianblur(bg_img, (3, 3), 0)  # 高斯模糊去噪
        bg_img = cv.canny(bg_img, 50, 150)  # canny算法进行边缘检测
        # 滑块做同样处理
        slider_img = cv.imread(slider_img_path, 0)
        slider_img = cv.gaussianblur(slider_img, (3, 3), 0)
        slider_img = cv.canny(slider_img, 50, 150)
        # 寻找最佳匹配
        res = cv.matchtemplate(bg_img, slider_img, cv.tm_ccoeff_normed)
        # 最小值,最大值,并得到最小值, 最大值的索引
        min_val, max_val, min_loc, max_loc = cv.minmaxloc(res)
        # 例如:(-0.05772797390818596, 0.30968162417411804, (0, 0), (196, 1))
        top_left = max_loc[0]  # 横坐标
        return top_left

滑块运动轨迹

模拟人的行为,到缺口位置时,继续向后滑动一段距离,然后再回退到准确位置

def get_tracks(self, distance):
        '''滑动轨迹 '''

        tracks = []
        v = 0
        t = 0.2  # 单位时间
        current = 0  # 滑块当前位移
        distance += 10  # 多移动10px,然后回退
        while current < distance:
            if current < distance * 5 / 8:
                a = random.randint(1, 3)
            else:
                a = -random.randint(2, 4)
            v0 = v  # 初速度
            track = v0 * t + 0.5 * a * (t ** 2)  # 单位时间(0.2s)的滑动距离
            tracks.append(round(track))  # 加入轨迹
            current += round(track)
            v = v0 + a * t
        #回退到大致位置
        for i in range(5):
            tracks.append(-random.randint(1, 3))
        return tracks

鼠标滑动操作

通过selenium中的鼠标动作链,按照滑动轨迹进行滑动

def mouse_move(self,slide,tracks):
        '''鼠标滑动'''

        #鼠标点击滑块并按照不放
        actionchains(self.driver).click_and_hold(slide).perform()
        #按照轨迹进行滑动,
        for track in tracks:
            actionchains(self.driver).move_by_offset(track, 0).perform() 
        actionchains(self.driver).release(slide).perform()

规避知乎selenium检测

使用selenium自动化测试爬取知乎的时候出现了:错误代码10001:请求异常请升级客户端后重新尝试,这个错误的产生是由于知乎可以检测selenium自动化测试的脚本

使用chrome的远程调试模式结合selenium来遥控操作chrome进行抓取,这样就会规避selenium被网站检测到

添加环境变量

将chrome.exe的目录添加到系统环境变量,比如c:\program files\google\chrome\application,这样就可以直接在命令行输入chrome.exe启动浏览器

打开cmd窗口,执行命令

chrome.exe --remote-debugging-port=9222 --user-data-dir="e:\eliwang\selenium_data"

注意端口不要被占用,user-data-dir用来指明配置文件的路径,自定义

此时会开启浏览器,并打开一个新的标签页

selenium接管的主要代码

options.add_experimental_option("debuggeraddress", "127.0.0.1:9222")

关闭浏览器窗口

1、使用浏览器对象的close()方法,quit()方法不行。

2、手动打开,手动关闭

完整登陆代码

# coding:utf-8

import cv2 as cv
import time
import random
from selenium import webdriver
from selenium.webdriver.support import expected_conditions as ec
from selenium.webdriver.support.ui import webdriverwait as wait
from selenium.webdriver import actionchains
from selenium.webdriver.common.by import by
from urllib.request import urlretrieve


class zhihu_login:
    '''知乎模拟登陆'''

    def __init__(self):
        options = webdriver.chromeoptions()
        #操控chrome浏览器
        options.add_experimental_option("debuggeraddress", "127.0.0.1:9222")
        self.driver = webdriver.chrome(options=options)
        self.wait = wait(self.driver, 5)
        self.url = 'https://www.zhihu.com/'
        self.bg_img_path = './bg.png'
        self.slider_img_path = './slider.png'


    def run(self):
        '''执行入口'''

        self.driver.get(self.url)
        try:
            if wait(self.driver,3).until(ec.presence_of_element_located((by.id,'popover15-toggle'))):
                print('登陆成功')
                self.save_cookie()
                self.driver.close()
        except:
            # 切换到密码登陆
            self.wait.until(ec.element_to_be_clickable((by.xpath, '//div[contains(@class,"signflow-tabs")]/div[2]'))).click()
            name_input = self.driver.find_element_by_name('username')
            name_input.clear()
            name_input.send_keys('账号')
            pass_input = self.driver.find_element_by_name('password')
            pass_input.clear()
            pass_input.send_keys('密码')
            self.wait.until(ec.element_to_be_clickable((by.xpath, '//button[@type="submit"]'))).click()  # 点击登陆按钮
            time.sleep(1)
            #进行滑动验证,最多尝试5次重新验证
            if self.slide_verify():
                print('登陆成功')
                self.save_cookie()
                self.driver.close()
            else:
                print('第1次登陆失败')
                for i in range(4):
                    print('正在尝试第%d次登陆'%(i+2))
                    if self.slide_verify():
                        print('第%d次登陆成功'%(i+2))
                        self.save_cookie()
                        self.driver.close()
                        return
                    print('第%d次登陆失败' % (i + 2))
                print('登陆失败5次,停止登陆')
                self.driver.close()


    def slide_verify(self):
        '''滑动验证'''

        slider_button = self.wait.until(ec.element_to_be_clickable((by.xpath, '//div[@class="yidun_slider"]')))
        self.bg_img_url = self.wait.until(ec.presence_of_element_located((by.xpath, '//img[@class="yidun_bg-img"]'))).get_attribute('src')  # 获取验证码背景图url
        self.slider_img_url = self.wait.until(ec.presence_of_element_located((by.xpath, '//img[@class="yidun_jigsaw"]'))).get_attribute('src')  # 获取验证码滑块图url
        urlretrieve(self.bg_img_url, self.bg_img_path)
        urlretrieve(self.slider_img_url, self.slider_img_path)
        distance = self.get_distance(self.bg_img_path, self.slider_img_path)
        distance += 10  # 实际移动距离需要向右偏移10px
        tracks = self.get_tracks(distance)
        self.mouse_move(slider_button,tracks)
        try:
            element = self.wait.until(ec.presence_of_element_located((by.id,'popover15-toggle')))
        except:
            return false
        else:
            return true

    def save_cookie(self):
        cookie = {}
        for item in self.driver.get_cookies():
            cookie[item['name']] = item['value']
        print(cookie)
        print('成功获取登陆知乎后的cookie信息')


    def mouse_move(self,slide,tracks):
        '''鼠标滑动'''

        #鼠标点击滑块并按照不放
        actionchains(self.driver).click_and_hold(slide).perform()
        #按照轨迹进行滑动,
        for track in tracks:
            actionchains(self.driver).move_by_offset(track, 0).perform()
        actionchains(self.driver).release(slide).perform()


    def get_distance(self, bg_img_path='./bg.png', slider_img_path='./slider.png'):
        """获取滑块移动距离"""

        # 背景图片处理
        bg_img = cv.imread(bg_img_path, 0)  # 读入灰度图片
        bg_img = cv.gaussianblur(bg_img, (3, 3), 0)  # 高斯模糊去噪
        bg_img = cv.canny(bg_img, 50, 150)  # canny算法进行边缘检测
        # 滑块做同样处理
        slider_img = cv.imread(slider_img_path, 0)
        slider_img = cv.gaussianblur(slider_img, (3, 3), 0)
        slider_img = cv.canny(slider_img, 50, 150)
        # 寻找最佳匹配
        res = cv.matchtemplate(bg_img, slider_img, cv.tm_ccoeff_normed)
        # 最小值,最大值,并得到最小值, 最大值的索引
        min_val, max_val, min_loc, max_loc = cv.minmaxloc(res)
        # 例如:(-0.05772797390818596, 0.30968162417411804, (0, 0), (196, 1))
        top_left = max_loc[0]  # 横坐标
        return top_left


    def get_tracks(self, distance):
        '''滑动轨迹 '''

        tracks = []
        v = 0
        t = 0.2  # 单位时间
        current = 0  # 滑块当前位移
        distance += 10  # 多移动10px,然后回退
        while current < distance:
            if current < distance * 5 / 8:
                a = random.randint(1, 3)
            else:
                a = -random.randint(2, 4)
            v0 = v  # 初速度
            track = v0 * t + 0.5 * a * (t ** 2)  # 单位时间(0.2s)的滑动距离
            tracks.append(round(track))  # 加入轨迹
            current += round(track)
            v = v0 + a * t
        #回退到大致位置
        for i in range(5):
            tracks.append(-random.randint(1, 3))
        return tracks


if __name__ == '__main__':
    zhihu_login().run()

到此这篇关于python爬虫之利用selenium+opencv识别滑动验证并模拟登陆知乎的文章就介绍到这了,更多相关selenium+opencv滑动验证内容请搜索以前的文章或继续浏览下面的相关文章希望大家以后多多支持!