陷波滤波器设计
程序员文章站
2022-03-22 08:18:35
飞控课程笔记(二)(https://zhuanlan.zhihu.com/p/66962045 across说的课程) 在飞控领域中,主要针对飞行器在某一个高频点幅值较大,换句话来说,就是常见的飞机有共振的现象时。首先考虑通过机械减震或IMU减震来消除这种现象,若实际很难做到就考虑软件方面处理。 要使用陷波滤波器,首先了解信号的频谱。假设已知有用信号在30Hz以内,在80Hz处有一个高频干扰。 此时如果使用低通(设计一个二阶IIR),其幅度响应如下图):......
飞控课程笔记(二)
(https://zhuanlan.zhihu.com/p/66962045 across说的课程)
在飞控领域中,主要针对飞行器在某一个高频点幅值较大,换句话来说,就是常见的飞机有共振的现象时。首先考虑通过机械减震或IMU减震来消除这种现象,若实际很难做到就考虑软件方面处理。
要使用陷波滤波器,首先了解信号的频谱。假设已知有用信号在30Hz以内,在80Hz处有一个高频干扰。
此时如果使用低通(设计一个二阶IIR),其幅度响应如下图):
可看到在80Hz处还没衰减完,
用fdatool设计一个陷波滤波器,
得到它的系数(Analysis----Filter Coefficients)
%fdatool设计 90hz中心 10hz带宽
dat = data2';
b=[0.925417,1.760248,0.925417];
a=[1.0,1.760248,0.850834];
datnotch = filter(b,a,dat);
在C代码中实现:
//1000hz调用 80-100的陷波处理
float Gyro_b1 = 0.9408;
float Gyro_b2 = -1.5918;
float Gyro_b3 = 0.9408;
float Gyro_a2 = -1.5918;
float Gyro_a3 = 0.8816;
void IMUdata_notch_filter(void)
{
pIMU_Data_filtered->RollRate = (Gyro_b1*pIMU_Data->RollRate + Gyro_b2*pIMU_Data_old->RollRate + Gyro_b3*pIMU_Data_pre_old->RollRate - Gyro_a2* pIMU_Data_filtered_old->RollRate - Gyro_a3*pIMU_Data_filtered_pre_old->RollRate);
pIMU_Data_filtered->PitchRate = (Gyro_b1*pIMU_Data->PitchRate + Gyro_b2*pIMU_Data_old->PitchRate + Gyro_b3*pIMU_Data_pre_old->PitchRate - Gyro_a2* pIMU_Data_filtered_old->PitchRate - Gyro_a3*pIMU_Data_filtered_pre_old->PitchRate);
pIMU_Data_filtered->YawRate = (Gyro_b1*pIMU_Data->YawRate + Gyro_b2*pIMU_Data_old->YawRate + Gyro_b3*pIMU_Data_pre_old->YawRate - Gyro_a2* pIMU_Data_filtered_old->YawRate - Gyro_a3*pIMU_Data_filtered_pre_old->YawRate);
pIMU_Data_pre_old->RollRate = pIMU_Data_old->RollRate;
pIMU_Data_old->RollRate = pIMU_Data->RollRate;
pIMU_Data_pre_old->PitchRate = pIMU_Data_old->PitchRate;
pIMU_Data_old->PitchRate = pIMU_Data->PitchRate;
pIMU_Data_pre_old->YawRate = pIMU_Data_old->YawRate;
pIMU_Data_old->YawRate = pIMU_Data->YawRate;
pIMU_Data_filtered_pre_old->RollRate = pIMU_Data_filtered_old->RollRate;
pIMU_Data_filtered_old->RollRate = pIMU_Data_filtered->RollRate;
pIMU_Data_filtered_pre_old->PitchRate = pIMU_Data_filtered_old->PitchRate;
pIMU_Data_filtered_old->PitchRate = pIMU_Data_filtered->PitchRate;
pIMU_Data_filtered_pre_old->YawRate = pIMU_Data_filtered_old->YawRate;
pIMU_Data_filtered_old->YawRate = pIMU_Data_filtered->YawRate;
}
上面的C代码在matlab里的仿真:
Z = dat;
b0 = 0.925417;
b1 = 1.760248;
b2 = 0.925417;
a1 = 1.760248;
a2 = 0.850834;
x_filt2 = zeros(n,1);
x2 = zeros(n,1);
x1 = zeros(n,1);
y2 = zeros(n,1);
y1 = zeros(n,1);
y2(1) = Z(1);
y1(1) = Z(1);
for i=2:n
x_filt2(i) = b0 * Z(i) + b1*x1(i-1) + b2*x2(i-1) - a1*y1(i-1) -a2*y2(i-1);
x2(i) = x1(i-1);
x1(i) = Z(i);
y2(i) = y1(i-1);
y1(i) = x_filt2(i);
end
谢谢across说!
本文地址:https://blog.csdn.net/weixin_40525909/article/details/107283873
上一篇: Vue点击切换颜色的方法
下一篇: IjkPlayer【2】 API 查询