欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

Nginx 源码完全剖析(10)ngx_radix_tree  

程序员文章站 2022-03-02 16:41:49
...

Nginx 源码完全剖析(10)ngx_radix_tree

ngx_radix_tree.h

// 未被使用的节点
#define NGX_RADIX_NO_VALUE   (uintptr_t) -1

typedef struct ngx_radix_node_s  ngx_radix_node_t;

struct ngx_radix_node_s {
    ngx_radix_node_t  *right; // 右子树的根节点
    ngx_radix_node_t  *left; // 左子树的根节点
    ngx_radix_node_t  *parent; // 父节点
    uintptr_t          value; // 值域
};


typedef struct {
    ngx_radix_node_t  *root; // 树根
    ngx_pool_t        *pool; // 该树所用的内存池
    ngx_radix_node_t  *free; // 空闲的节点由free开始连成一个链表,节点间通过right指针连接 
    char              *start;
    size_t             size;
} ngx_radix_tree_t;

ngx_radix_tree.c

static void *ngx_radix_alloc(ngx_radix_tree_t *tree);


ngx_radix_tree_t *
ngx_radix_tree_create(ngx_pool_t *pool, ngx_int_t preallocate)
{
    uint32_t           key, mask, inc;
    ngx_radix_tree_t  *tree;

    // 为该树的结构体分配内存
    tree = ngx_palloc(pool, sizeof(ngx_radix_tree_t));
    if (tree == NULL) {
        return NULL;
    }

    // 初始化各成员
    tree->pool = pool;
    tree->free = NULL;
    tree->start = NULL;
    tree->size = 0;

    // 为根节点分配内存(实际上不一定有重新的内存分配操作,具体详见ngx_radix_alloc部分)
    tree->root = ngx_radix_alloc(tree);
    if (tree->root == NULL) {
        return NULL;
    }

    // 根节点的初始化
    tree->root->right = NULL;
    tree->root->left = NULL;
    tree->root->parent = NULL;
    tree->root->value = NGX_RADIX_NO_VALUE;

    // 如果指定的预分配节点数为 0,则直接返回这个树就好了
    if (preallocate == 0) {
        return tree;
    }

    /*
     * Preallocation of first nodes : 0, 1, 00, 01, 10, 11, 000, 001, etc.
     * increases TLB hits even if for first lookup iterations.
     * On 32-bit platforms the 7 preallocated bits takes continuous 4K,
     * 8 - 8K, 9 - 16K, etc.  On 64-bit platforms the 6 preallocated bits
     * takes continuous 4K, 7 - 8K, 8 - 16K, etc.  There is no sense to
     * to preallocate more than one page, because further preallocation
     * distributes the only bit per page.  Instead, a random insertion
     * may distribute several bits per page.
     *
     * Thus, by default we preallocate maximum
     *     6 bits on amd64 (64-bit platform and 4K pages)
     *     7 bits on i386 (32-bit platform and 4K pages)
     *     7 bits on sparc64 in 64-bit mode (8K pages)
     *     8 bits on sparc64 in 32-bit mode (8K pages)
     */

    // 下面这部分就很有意思了,你可以看上面的英文注释。简单说,一个 x bits 的值,对应其 Radix 树
    // 有 x + 1 层,那么节点的个数就是 2^(x+1) -1 个(数据结构常识,你也可以很容易证明这个结论)。
    if (preallocate == -1) {

        // 根据 pagesize 大小,确定可以分配多少个 radix 树结构
        switch (ngx_pagesize / sizeof(ngx_radix_tree_t)) {

        /* amd64 */
        case 128:
            preallocate = 6;
            break;

        /* i386, sparc64 */
        case 256:
            preallocate = 7;
            break;

        /* sparc64 in 32-bit mode */
        default:
            preallocate = 8;
        }
    }

    mask = 0;
    inc = 0x80000000;

    // preallocate 为几,最终 mask 就有几个最高位为1,其他为0。整个循环过程中 mask 不断右移并在
    // 最高位添置新 1。
    while (preallocate--) {

        key = 0;
        mask >>= 1;
        mask |= 0x80000000;

        do {
            if (ngx_radix32tree_insert(tree, key, mask, NGX_RADIX_NO_VALUE)
                != NGX_OK)
            {
                return NULL;
            }

            key += inc;

        } while (key);

        inc >>= 1;
    }

    return tree;
}

// mask 为掩码,用于截取 key 中的部分比特位,将其插入到 tree 数中,对应的值为 value
ngx_int_t
ngx_radix32tree_insert(ngx_radix_tree_t *tree, uint32_t key, uint32_t mask,
    uintptr_t value)
{
    uint32_t           bit;
    ngx_radix_node_t  *node, *next;

    bit = 0x80000000;

    node = tree->root;
    next = tree->root;

    while (bit & mask) {
        if (key & bit) {
            next = node->right;

        } else {
            next = node->left;
        }

        // 当前节点为叶子节点,停止循环查找
        if (next == NULL) {
            break;
        }

        bit >>= 1;
        node = next;
    }

    // next 不为 NULL,是因 bit & mask 为 0 退出上面的 while 的
    if (next) {
        if (node->value != NGX_RADIX_NO_VALUE) {
            return NGX_BUSY;
        }

        node->value = value;
        return NGX_OK;
    }

    // next 为 NULL,从 tree 新分配一个节点
    while (bit & mask) {
        next = ngx_radix_alloc(tree);
        if (next == NULL) {
            return NGX_ERROR;
        }

        next->right = NULL;
        next->left = NULL;
        next->parent = node;
        next->value = NGX_RADIX_NO_VALUE;

        if (key & bit) {
            node->right = next;

        } else {
            node->left = next;
        }

        bit >>= 1;
        node = next;
    }

    node->value = value;

    return NGX_OK;
}

// 节点从 Radix 树中删除后,会放入到 free 链表中
ngx_int_t
ngx_radix32tree_delete(ngx_radix_tree_t *tree, uint32_t key, uint32_t mask)
{
    uint32_t           bit;
    ngx_radix_node_t  *node;

    bit = 0x80000000;
    node = tree->root;

    while (node && (bit & mask)) {
        // key 该位为 1,表示接下来找右子树
        if (key & bit) {
            node = node->right;
        // key 该位为 0,表示接下来找左子树
        } else {
            node = node->left;
        }

        bit >>= 1;
    }

    // 要删除的节点不存在
    if (node == NULL) {
        return NGX_ERROR;
    }

    // 要删除的节点还有子节点
    if (node->right || node->left) {
        if (node->value != NGX_RADIX_NO_VALUE) {
            node->value = NGX_RADIX_NO_VALUE;
            return NGX_OK;
        }

        // 要删除的节点有子树,但是该节点的值为无效值,则视为错误
        return NGX_ERROR;
    }

    for ( ;; ) {
        // 如果该节点是右节点
        if (node->parent->right == node) {
            node->parent->right = NULL;
        // 如果该节点是左节点
        } else {
            node->parent->left = NULL;
        }

        node->right = tree->free;
        tree->free = node;

        node = node->parent;

        if (node->right || node->left) {
            break;
        }

        if (node->value != NGX_RADIX_NO_VALUE) {
            break;
        }

        // node 为根节点
        if (node->parent == NULL) {
            break;
        }
    }

    return NGX_OK;
}

// 在 tree 树中查找 key 值,key 是一个无符号的32位整数,每一位对应从树根开始
// 查找时选择左子树(0)还是右子树(1)
uintptr_t
ngx_radix32tree_find(ngx_radix_tree_t *tree, uint32_t key)
{
    uint32_t           bit;
    uintptr_t          value;
    ngx_radix_node_t  *node;

    // 初始状态下最高位为1,用于后面的“与”操作,确定左右子树
    bit = 0x80000000;
    value = NGX_RADIX_NO_VALUE;
    node = tree->root; // 从树根开始

    // 理论上最多循环32次(key为32位),实际上查找到node为NULL,则表明上一轮循环中已经是叶子节点
    while (node) {
        if (node->value != NGX_RADIX_NO_VALUE) {
            value = node->value;
        }

        // 该位为 1 则右子树
        if (key & bit) {
            node = node->right;

        // 该位为 0 则左子树
        } else {
            node = node->left;
        }

        bit >>= 1;
    }

    // 返回找到的节点的值
    return value;
}


static void *
ngx_radix_alloc(ngx_radix_tree_t *tree)
{
    char  *p;

    // 创建Radix树时会调用,此时free为NULL,不会进入该if分支
    // 插入时调用到这里,free 值非零,则返回 free
    if (tree->free) {
        p = (char *) tree->free;
        tree->free = tree->free->right;
        return p;
    }

    // 创建Radix树时会调用,此时tree->size为0,会进入该if分支
    if (tree->size < sizeof(ngx_radix_node_t)) {
        // 以ngx_pagesize大小内存对齐的方式,从内存池tree->pool中分配ngx_pagesize大小的内存给start
        // ngx_pagesize 是在 src/os/unix/ngx_posix_init.c 和 src/os/win32/ngx_win32_init.c
        // 的 ngx_os_init() 函数中初始化的。pagesize 的值与处理器架构有关。
        tree->start = ngx_pmemalign(tree->pool, ngx_pagesize, ngx_pagesize);
        if (tree->start == NULL) {
            return NULL;
        }

        // tree->size 为刚才分配的内存大小
        tree->size = ngx_pagesize;
    }

    // tree->start 加上 ngx_radix_node_t 将要占用的大小
    // tree->size 减去 ngx_radix_node_t 将要占用的大小
    p = tree->start;
    tree->start += sizeof(ngx_radix_node_t);
    tree->size -= sizeof(ngx_radix_node_t);

    // 虽然返回值类型是 void*,但是调用处都会转为 ngx_radix_node_t
    return p;
}

-

转载请注明来自钟超的CSDN博客:Blog.CSDN.net/Poechant

-