Spark 以及 spark streaming 核心原理及实践 - (2)
Spark Streaming运行原理
spark程序是使用一个spark应用实例一次性对一批历史数据进行处理,spark streaming是将持续不断输入的数据流转换成多个batch分片,使用一批spark应用实例进行处理。
从原理上看,把传统的spark批处理程序变成streaming程序,spark需要构建什么?
需要构建4个东西:
-
一个静态的 RDD DAG 的模板,来表示处理逻辑;
-
一个动态的工作控制器,将连续的 streaming data 切分数据片段,并按照模板复制出新的 RDD ;
-
DAG 的实例,对数据片段进行处理;
-
Receiver进行原始数据的产生和导入;Receiver将接收到的数据合并为数据块并存到内存或硬盘中,供后续batch RDD进行消费;
-
对长时运行任务的保障,包括输入数据的失效后的重构,处理任务的失败后的重调。
具体streaming的详细原理可以参考广点通出品的源码解析文章:
对于spark streaming需要注意以下三点:
- 尽量保证每个work节点中的数据不要落盘,以提升执行效率。
- 保证每个batch的数据能够在batch interval时间内处理完毕,以免造成数据堆积。
- 使用steven提供的框架进行数据接收时的预处理,减少不必要数据的存储和传输。从tdbank中接收后转储前进行过滤,而不是在task具体处理时才进行过滤。
Spark 资源调优
内存管理:
Executor的内存主要分为三块:
第一块是让task执行我们自己编写的代码时使用,默认是占Executor总内存的20%;
第二块是让task通过shuffle过程拉取了上一个stage的task的输出后,进行聚合等操作时使用,默认也是占Executor总内存的20%;
第三块是让RDD持久化时使用,默认占Executor总内存的60%。
每个task以及每个executor占用的内存需要分析一下。每个task处理一个partiiton的数据,分片太少,会造成内存不够。
其他资源配置:
具体调优可以参考美团点评出品的调优文章:
http://tech.meituan.com/spark-tuning-basic.html
http://tech.meituan.com/spark-tuning-pro.html
Spark 环境搭建
spark tdw以及tdbank api文档:
http://git.code.oa.com/tdw/tdw-spark-common/wikis/api
其他学习资料:
http://km.oa.com/group/2430/articles/show/257492
原文链接:https://www.qcloud.com/community/article/770164
https://www.cnblogs.com/liuliliuli2017/p/6809094.html
上一篇: Android 刷机方案
下一篇: python xlwt模块简介