爬取70城房价到oracle数据库并6合1
程序员文章站
2022-03-21 17:31:43
学习数据分析,然后没有合适的数据源,从国家统计局的网页上抓取一页数据来玩玩(没有发现robots协议,也仅仅发出一次连接请求,不对网站造成任何负荷)运行效果源码python代码'''本脚本旨在爬取70城房价进入oracle数据库以供学习code by 九命猫幺网页中有6个表格 最终爬取到数据库中形成... ......
学习数据分析,然后没有合适的数据源,从国家统计局的网页上抓取一页数据来玩玩(没有发现robots协议,也仅仅发出一次连接请求,不对网站造成任何负荷)
运行效果
源码
python代码
'''
本脚本旨在爬取70城房价进入oracle数据库以供学习
code by 九命猫幺
网页中有6个表格
最终爬取到数据库中形成6合1报表
'''
import requests
from bs4 import beautifulsoup
import numpy as np
import pandas as pd
from sqlalchemy import create_engine
#爬取网页
def gethtmltext(url):
try:
headers={'user-agent':'baiduspider'}
r = requests.get(url,headers=headers,timeout=30)
r.raise_for_status()
r.encoding = r.apparent_encoding
return r.text
except:
return '产生异常'
#解析出列表
def gettrtext(tbody,tnum):
uinfo1 = []
uinfo2 = []
for i in tbody.strings:
if i != ' ':
uinfo1.append(str(i.string).replace('\u3000','').replace(' ',''))
for i in uinfo1:
if i not in ['皇','岛', '家','庄','丹','江','尔','滨','顶','山']:
uinfo2.append(i.replace('秦','秦皇岛').replace('石','石家庄').replace('牡','牡丹江').replace('哈','哈尔滨').replace('平','平顶山'))
uinfo2 = uinfo2[{1:-280,2:-280,3:-350,4:-350,5:-350,6:-350}[tnum]::]
return uinfo2
#将解析出的列表加工转换传入oracle库
def tosql(uinfo,tnum):
if tnum in [1,2]:
df = pd.dataframe(np.array(uinfo).reshape(70,4),columns=['city','mom','yoy','fbr'])
else:
df = pd.dataframe(np.array(uinfo).reshape(35,10),columns=['city','mom_90l','yoy_90l','fbr_90l','mom_90t144','yoy_90t144','fbr_90t144','mom_144u','yoy_144u','fbr_144u'])
con = create_engine('oracle+cx_oracle://edw:oracle@192.168.168.5:1521/?service_name=edw')
df.to_sql('tb_fj_70city_t'+str(tnum),con,if_exists='replace',index=false)
if __name__ == "__main__":
uinfo = []
url = 'http://www.stats.gov.cn/tjsj/zxfb/201911/t20191115_1709560.html'
#爬网页
html = gethtmltext(url)
soup = beautifulsoup(html,'html.parser')
tbody = soup.select('table.msonormaltable tbody')
#解析存储
for i in range(6):
#解析表
uinfo = gettrtext(tbody[i],i+1)
#存表入数据库
tosql(uinfo,i+1)
数据库代码
--70个大中城市商品住宅销售价格变动情况
create table tb_fj_70city_201910 as
with tmp1 as(
select to_char(a.city) city,to_number(a.mom) new_mom,to_number(a.yoy) new_yoy,to_number(a.fbr) new_fbr
from tb_fj_70city_t1 a),
tmp2 as(
select to_char(a.city) city,to_number(a.mom) old_mom,to_number(a.yoy) old_yoy,to_number(a.fbr) old_fbr
from tb_fj_70city_t2 a),
tmp3 as(
select to_char(a.city) city,to_number(a.mom_90l) new_mom_90l,to_number(a.yoy_90l) new_yoy_90l,to_number(a.fbr_90l) new_fbr_90l,
to_number(a.mom_90t144) new_mom_90t144,to_number(a.yoy_90t144) new_yoy_90t144,to_number(a.fbr_90t144) new_fbr_90t144,
to_number(a.mom_144u) new_mom_144u,to_number(a.yoy_144u) new_yoy_144u,to_number(a.fbr_144u) new_fbr_144u
from tb_fj_70city_t3 a
union
select to_char(a.city) city,to_number(a.mom_90l) new_mom_90l,to_number(a.yoy_90l) new_yoy_90l,to_number(a.fbr_90l) new_fbr_90l,
to_number(a.mom_90t144) new_mom_90t144,to_number(a.yoy_90t144) new_yoy_90t144,to_number(a.fbr_90t144) new_fbr_90t144,
to_number(a.mom_144u) new_mom_144u,to_number(a.yoy_144u) new_yoy_144u,to_number(a.fbr_144u) new_fbr_144u
from tb_fj_70city_t4 a),
tmp4 as(
select to_char(a.city) city,to_number(a.mom_90l) old_mom_90l,to_number(a.yoy_90l) old_yoy_90l,to_number(a.fbr_90l) old_fbr_90l,
to_number(a.mom_90t144) old_mom_90t144,to_number(a.yoy_90t144) old_yoy_90t144,to_number(a.fbr_90t144) old_fbr_90t144,
to_number(a.mom_144u) old_mom_144u,to_number(a.yoy_144u) old_yoy_144u,to_number(a.fbr_144u) old_fbr_144u
from tb_fj_70city_t5 a
union
select to_char(a.city) city,to_number(a.mom_90l) old_mom_90l,to_number(a.yoy_90l) old_yoy_90l,to_number(a.fbr_90l) old_fbr_90l,
to_number(a.mom_90t144) old_mom_90t144,to_number(a.yoy_90t144) old_yoy_90t144,to_number(a.fbr_90t144) old_fbr_90t144,
to_number(a.mom_144u) old_mom_144u,to_number(a.yoy_144u) old_yoy_144u,to_number(a.fbr_144u) old_fbr_144u
from tb_fj_70city_t6 a)
select 201910 month,aa.city,aa.new_mom,aa.new_yoy,aa.new_fbr,bb. old_mom,bb.old_yoy,bb.old_fbr,
cc.new_mom_90l,cc.new_yoy_90l,cc.new_fbr_90l,
cc.new_mom_90t144,cc.new_yoy_90t144,cc.new_fbr_90t144,
cc.new_mom_144u,cc.new_yoy_144u,cc.new_fbr_144u,
dd.old_mom_90l,dd.old_yoy_90l,dd.old_fbr_90l,
dd.old_mom_90t144,dd.old_yoy_90t144,dd.old_fbr_90t144,
dd.old_mom_144u,dd.old_yoy_144u,dd.old_fbr_144u
from tmp1 aa
join tmp2 bb on aa.city=bb.city
join tmp3 cc on aa.city=cc.city
join tmp4 dd on aa.city=dd.city;
call p_drop_table_if_exist('tb_fj_70city_t1');
call p_drop_table_if_exist('tb_fj_70city_t2');
call p_drop_table_if_exist('tb_fj_70city_t3');
call p_drop_table_if_exist('tb_fj_70city_t4');
call p_drop_table_if_exist('tb_fj_70city_t5');
call p_drop_table_if_exist('tb_fj_70city_t6');
select * from tb_fj_70city_201910;
就这样,表名中列名,取英文首字母:
mom:month on month ,环比
yoy:year on year,同比
fbr:fixed base ratio,定基比
90l:90 lower,90平米以下
144u:144 upper,144平米以上
90t144:90 to 144,90到144平米之间
优化后
上述脚本只能爬取一个月的,并且6表合1操作在数据库中执行,现在优化为批量爬取多个月份的数据
'''
本脚本旨在爬取70城房价进入oracle数据库以供学习
code by 九命猫幺
网页中有6个表格
最终爬取到数据库中形成6合1报表
网址:
'''
import requests
from bs4 import beautifulsoup
import numpy as np
import pandas as pd
from sqlalchemy import create_engine
import cx_oracle
#爬取网页
def gethtmltext(url):
try:
headers={'user-agent':'baiduspider'}
r = requests.get(url,headers=headers,timeout=30)
r.raise_for_status()
r.encoding = r.apparent_encoding
return r.text
except:
return '产生异常'
#解析出列表
def gettrtext(tbody,tnum):
uinfo1 = []
uinfo2 = []
for i in tbody.strings:
if i != ' ':
uinfo1.append(str(i.string).replace('\u3000','').replace(' ',''))
for i in uinfo1:
if i not in ['皇','岛', '家','庄','丹','江','尔','滨','顶','山']:
uinfo2.append(i.replace('秦','秦皇岛').replace('石','石家庄').replace('牡','牡丹江').replace('哈','哈尔滨').replace('平','平顶山'))
uinfo2 = uinfo2[{1:-280,2:-280,3:-350,4:-350,5:-350,6:-350}[tnum]::]
return uinfo2
#将解析出的列表加工转换传入oracle库
def tosql(uinfo,tnum):
if tnum in [1,2]:
df = pd.dataframe(np.array(uinfo).reshape(70,4),columns=['city','mom','yoy','fbr'])
else:
df = pd.dataframe(np.array(uinfo).reshape(35,10),columns=['city','mom_90l','yoy_90l','fbr_90l','mom_90t144','yoy_90t144','fbr_90t144','mom_144u','yoy_144u','fbr_144u'])
con = create_engine('oracle+cx_oracle://edw:oracle@192.168.168.5:1521/?service_name=edw')
df.to_sql('tb_fj_70city_t'+str(tnum),con,if_exists='replace',index=false)
#6合1 并插入历史宽表
def intowidetable(month):
con = cx_oracle.connect('edw','oracle','192.168.168.5:1521/edw')
cur = con.cursor()
cur.execute("call p_drop_table_if_exist('tb_fj_70city_"+str(month)+"')")
cur.execute('''create table tb_fj_70city_'''+str(month)+''' as
with tmp1 as(
select to_char(a.city) city,to_number(a.mom) new_mom,to_number(a.yoy) new_yoy,to_number(a.fbr) new_fbr
from tb_fj_70city_t1 a),
tmp2 as(
select to_char(a.city) city,to_number(a.mom) old_mom,to_number(a.yoy) old_yoy,to_number(a.fbr) old_fbr
from tb_fj_70city_t2 a),
tmp3 as(
select to_char(a.city) city,to_number(a.mom_90l) new_mom_90l,to_number(a.yoy_90l) new_yoy_90l,to_number(a.fbr_90l) new_fbr_90l,
to_number(a.mom_90t144) new_mom_90t144,to_number(a.yoy_90t144) new_yoy_90t144,to_number(a.fbr_90t144) new_fbr_90t144,
to_number(a.mom_144u) new_mom_144u,to_number(a.yoy_144u) new_yoy_144u,to_number(a.fbr_144u) new_fbr_144u
from tb_fj_70city_t3 a
union
select to_char(a.city) city,to_number(a.mom_90l) new_mom_90l,to_number(a.yoy_90l) new_yoy_90l,to_number(a.fbr_90l) new_fbr_90l,
to_number(a.mom_90t144) new_mom_90t144,to_number(a.yoy_90t144) new_yoy_90t144,to_number(a.fbr_90t144) new_fbr_90t144,
to_number(a.mom_144u) new_mom_144u,to_number(a.yoy_144u) new_yoy_144u,to_number(a.fbr_144u) new_fbr_144u
from tb_fj_70city_t4 a),
tmp4 as(
select to_char(a.city) city,to_number(a.mom_90l) old_mom_90l,to_number(a.yoy_90l) old_yoy_90l,to_number(a.fbr_90l) old_fbr_90l,
to_number(a.mom_90t144) old_mom_90t144,to_number(a.yoy_90t144) old_yoy_90t144,to_number(a.fbr_90t144) old_fbr_90t144,
to_number(a.mom_144u) old_mom_144u,to_number(a.yoy_144u) old_yoy_144u,to_number(a.fbr_144u) old_fbr_144u
from tb_fj_70city_t5 a
union
select to_char(a.city) city,to_number(a.mom_90l) old_mom_90l,to_number(a.yoy_90l) old_yoy_90l,to_number(a.fbr_90l) old_fbr_90l,
to_number(a.mom_90t144) old_mom_90t144,to_number(a.yoy_90t144) old_yoy_90t144,to_number(a.fbr_90t144) old_fbr_90t144,
to_number(a.mom_144u) old_mom_144u,to_number(a.yoy_144u) old_yoy_144u,to_number(a.fbr_144u) old_fbr_144u
from tb_fj_70city_t6 a)
select '''+str(month)+''' month,aa.city,aa.new_mom,aa.new_yoy,aa.new_fbr,bb. old_mom,bb.old_yoy,bb.old_fbr,
cc.new_mom_90l,cc.new_yoy_90l,cc.new_fbr_90l,
cc.new_mom_90t144,cc.new_yoy_90t144,cc.new_fbr_90t144,
cc.new_mom_144u,cc.new_yoy_144u,cc.new_fbr_144u,
dd.old_mom_90l,dd.old_yoy_90l,dd.old_fbr_90l,
dd.old_mom_90t144,dd.old_yoy_90t144,dd.old_fbr_90t144,
dd.old_mom_144u,dd.old_yoy_144u,dd.old_fbr_144u
from tmp1 aa
join tmp2 bb on aa.city=bb.city
join tmp3 cc on aa.city=cc.city
join tmp4 dd on aa.city=dd.city''')
cur.close()
con.close()
if __name__ == "__main__":
uinfo = []
urls = {201910:'http://www.stats.gov.cn/tjsj/zxfb/201911/t20191115_1709560.html',
201909:'http://www.stats.gov.cn/tjsj/zxfb/201910/t20191021_1704063.html',
201908:'http://www.stats.gov.cn/tjsj/zxfb/201909/t20190917_1697943.html',
201907:'http://www.stats.gov.cn/statsinfo/auto2074/201908/t20190815_1691536.html',
201906:'http://www.stats.gov.cn/tjsj/zxfb/201907/t20190715_1676000.html',
201905:'http://www.stats.gov.cn/tjsj/zxfb/201906/t20190618_1670960.html',
201904:'http://www.stats.gov.cn/tjsj/zxfb/201905/t20190516_1665286.html',
201903:'http://www.stats.gov.cn/tjsj/zxfb/201904/t20190416_1659682.html'
}
for key in urls:
#爬网页
html = gethtmltext(urls[key])
soup = beautifulsoup(html,'html.parser')
tbody = soup.select('table.msonormaltable tbody')
#解析存储
for i in range(6):
#解析表
uinfo = gettrtext(tbody[i],i+1)
#存表入数据库
tosql(uinfo,i+1)
#存入宽表
intowidetable(key)
数据库中同时得到了多个月份的
上一篇: 程序员是如何处理密码的?
下一篇: 毕业半年,买了一台MacBook Pro